線上影音

Home > ANSYS Simplorer教學  > Conducted EMI using Simplorer+Q3D

 

本文始於2017.08,除了介紹幾篇大廠使用Simplorer+Q3D分析傳導干擾的成功案例外,也示範一個簡單而完整的操作流程,附上檔案供讀者可以學習。The article started in 2017.08. Besides introducing some successful stories of conducted EMI analysis with Simplorer+Q3D, it demonstrates a simple example for user to download and practice.

-- 新增7.3於 2019.12

  1. 電力電子模擬 Power Electronics Simulation

  2. 大廠成功案例 Successful Stories

    2.1 Rockwell used Simplorer+Q3D for Flyback conductive EMI analysis
    2.2 Toshiba used Simplorer+Q3D for DC-AC Inverter conductive EMI analysis
    2.3 Power Inverter using accurate IGBT model based on datasheet, Simplorer+Q3D

  3. 基本電路模擬 Basic Circuit Simulation

  4. 含元件動態模型的電路模擬 Circuit Simulation with device dynamic models

  5. 含元件動態模型與PCB寄生效應的電路模擬 Circuit Simulation with device dynamic models and PCB parasitic effect

  6. 含元件動態模型, PCB與封裝寄生效應的電路模擬 Circuit Simulation with device dynamic models, PCB and package parasitic effect

  7. 問題與討論 Q&A

    7.1 模型更準確,在頻域上看到的傳導EMI是變差還是變好呢?

    7.2 電源系統中,IC/封裝/PCB/Cable/主動/被動元件的寄生效應,何者影響最大?

    7.3 Simplorer連結Q3D模型共有幾種方式?其分別特性與設定注意事項(準度/頻寬)?

    7.4 Rectangular Plot時,Domain選[Spectral]為何[Noise Threshold]呈現灰色,無法更改設定60dB成其他?

  8. Reference

  1. 電力電子模擬 Power Electronics Simulation 

一個真實的系統中含有許多大大小小的元件(IC/PCB/Connector/Outer case...),模擬結果要準確除了需考慮每個元件不同層面的影響外(電/熱/應力...),還必須考慮模擬的時間以兼顧工作效率。因為越準確的模型所需的模擬時間越久,所以正確的系統觀點判斷,對於不同的元件採用不同準度/等級的模型來做模擬,才是高明的做法。

也就是說,在開始模擬之前的準備階段,對於所要模擬的題目、想要觀察的問題現象本身的物理特性有基本理解,事先做好評估,採用最理想的模擬手法,這才是做好模擬的關鍵所在。

以電性模擬為例來說,HSPICE model與IBIS model就是兩種不同的IO model,前者是transistor level,比較準但模擬時間較長,後者是behavior model,準度還可以,但模擬速度快很多。另外,RLC model與S-parameter model也是兩種不同的寄生效應模型,前者適用於低頻(conductive EMI)問題分析,後者適用於高頻問題分析(radiative EMI or coupling issue)。

以下是Simplorer支持的各種不同級別的元件模型 :

  1. 大廠成功案例 Successful Stories

2.1 Rockwell Automation used Simplorer+Q3D for Flyback conductive EMI analysis [1] 

模擬準確的關鍵在:系統\電路中所有的主動、被動元件與PCB都要正確的modeling(手法要正確),整個一起模擬得到收斂的結果(選擇對的軟體)。

這篇ppt有很多what if分析,值得研讀,了解人家大廠是怎麼做研究。(不過該內容原本在IEEE EMC Society的連結被移除了)

2.2 Toshiba used Simplorer+Q3D for DC-AC Inverter conductive EMI analysis [2] 

除了先前我們提到的主動、被動元件與PCB外,本篇論文還包含cable與功率元件封裝的寄生效應

不管時域或頻域波形,都非常準確

2.3 Power Inverter using accurate IGBT model based on datasheet [3]

利用Q3D萃取PCB model,除了datasheet的資訊,必須再考慮其它RL寄生效應 得到對於暫態響應更精準的model,模擬跟量測會更貼近。

  1. 基本電路模擬 Basic Circuit Simulation 

For the first experience to simulate with Simplorer, let's implement a buck DC-DC converter for example. All of power device models are taken from Simplorer library. If you don't know how to do that, please refer to here.

  1. 含元件動態模型的電路模擬 Circuit Simulation with device dynamic models 

Instead of using system model for power devices, we use dynamic models for the MOS and diode as below.

There are a lot of power device dynamic models ready in Simplorer library.

Comparing the spectrum of Vo using system model and dynamic model.

  1. 含元件動態模型與PCB寄生效應的電路模擬 Circuit Simulation with device dynamic models and PCB parasitic effect 

Use Q3D to extract PCB (5cmx10cm) parasitic RLCG effect

Link Q3D 3D model in Simplorer, from [Simplorer Circuit] \ [Subcircruit] \ [Add Q3D Dynamic component] \ [Add State Space]

Re-arrange the schematic circuit and connect all components correctly.

  1. 含元件動態模型, PCB與封裝寄生效應的電路模擬 Circuit Simulation with device dynamic models, PCB and package parasitic effect 

  2. 問題與討論 Q&A

7.1 模型更準確,在頻域上看到的傳導EMI是變差還是變好呢? 

Ans:2.2與2.3的論文顯示, 使用accuracy power device model,LISN量到的conductive EMI在高頻(1~100MHz)會較低。本文step4,5也有看到同樣的趨勢,使用高準度的dynamic model for power device,高頻(5~27MHz)的conductive EMI是較低的。

7.2 電源系統中,IC/封裝/PCB/Cable/主動/被動元件的寄生效應,何者影響最大? 

Ans:從本文的簡單範例,以及論文[2][3]所示,power device使用高準度模型做電力電子模擬,對雜訊結果有關鍵性影響。從[2][4][5]可以看出考慮封裝模型的重要,從[2][6]則可以看到Cable model有很大影響,[7]可以看出PCB的影響,所以都很重要。

7.3 Simplorer連結Q3D模型共有幾種方式?其分別特性與設定注意事項(準度/頻寬)?

Ans:共有五種方式

  • 直接透過Simplorer軟體操作畫面連結(Dynamic Link):
    乍看只有兩種連結方式,分別是equivalent circuit與state space model,但其實state space model裡又再分S-parameter/RLCG-parameter兩種Link Type。所以有三種Dynamic Link。

  • 輸出Simplorer(.sml)/HSPICE(.sp)兩種模型:
    Export Simplorer(.sml)/HSPICE(.sp)model from Q3D, then import it into Simplorer

以上五種連結方式中,Q3D state space Link - S-parameter,因為這是寬頻行為的模型,能兼顧DC to 1GHz準度。但以這種方式連結時,必須特別注意passivity/causality特性與埠端參考阻抗Z(ref)設定。 Q3D state space Link - RLCG則是適合DC to 數十MHz的低頻應用,沒有對參考阻抗Z(ref)敏感的問題。

參考阻抗Z(ref)的選擇必須貼近求解模型的特性阻抗,對PI取0.1~0.01 ohm,對SI取50~75 ohm。

透過Equivalent circuit link Q3D是從LastAdaptive看單頻點AC RL的效果, DC R準度無法確保。

讀者可以參考本站附件(Simplorer link Q3D_Rdc_Rac_R192.aedtz)做測試,不管是直流訊號或是1M交流訊號,在Simplorer看電路行為都可以與Q3D內看到各個頻點的RL準度完全對應。

7.4 Rectangular Plot時,Domain選[Spectral]為何[Noise Threshold]呈現灰色,無法更改設定60dB成其他?

Ans:鼠標移到整個操作對話框右下角,將整個操作對話框略拉大,即可看到有一個[Advanced]按鈕可以設定

  1. Reference 

[1] G. L. Skibinski, "EMC Aspects of Hybrid Vehicles and Motors", EMC Society 2010. (推薦)

[2] Sari Maekawa, Hisao Kubota, "EMI prediction method for SiC inverter by the modeling of structure and the accurate model of power device", Int. Power Electron. Conference, 2014. (推薦)

[3] Hyunwoo Shim, In-Myoung Kim, "Analysis of High Frequency Characteristics of Power Inverter using Accurate IGBT Model based on Datasheet and Measurement", IEEE Electrical Design of Advanced Packaging and Systems Symposium, 2015.

[4] Atanu Dutta, "Electromagnetic Interference Simulations for Wide-Bandgap Power Electronic Modules", IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016.

[5] Hocine Daou, François Costa, "Dynamic Electric Model for IGBT Power module based on Q3D and Simplorer : 3D Layout Design, Stray Inductance Estimation, Experimental Verifications", ESARS-ITEC, 2016.

[6] Han Xiong, "Finite Element Analysis Modeling and Experimental Verification of Reflected Wave Phenomena in Variable Speed Machine Drive Cables", Int. Electric Machines and Drives Conference (IEMDC), 2017.  --以Q3D建立cable model,並觀察cable length的影響

[7] Weichang Cheng, "Novel Hybrid Analytical/Numerical Conducted EMI Model of a Flyback Converter", IEEE Trans. on Electromagnetic Compatibility, 2017. --以Q3D萃取出PCB對地的共模寄生迴路

[8] Cai Chen, Xuejun Pei, "Investigation, Evaluation, and Optimization of Stray Inductance in Laminated Busbar", IEEE Trans. on Power Electron., 2014.

[9] Li Yang, Yukun Luo, "Design and Test of a Planarized High Power Density 100 kW SiC Traction Inverter with 1kV DC-Link", IEEE ECCE, 2018.

[10] How to Do PCB Modeling For a Power Converter (with Q3D) TI官方認證Application Note

[11] Zhengyang Liu,Fred C. Lee, "Package Parasitic Inductance Extraction and Simulation Model Development for the High-Voltage Cascode GaN HEMT", IEEE Trans. on Power Electron., vol. 29, Apr. 2014.