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1. Introduction

In this note, we discuss the “mutual resistance” phenomenon and investigate why it occ
order to do this, we briefly review some key concepts from electromagnetics and circuit t
Armed with these results, we can show how the mutual resistance arises through the “pro
effect.” We can also show how mutual resistance can be modeled using circuit elements. 
we discuss why mutual resistance is important for calculating the total resistance in real cir

2. Background

The physics of electromagnetism are governed by Maxwell’s equations for the electri

magnetic fields,  and , respectively. In the general high-frequency case we have

(1)

(2)

Here,  is the permittivity of the medium,  is its permeability, and  is a current density d

the movement of free charges. The angular frequency is . Maxwell’s equations const
complete description of the electromagnetic fields from very low frequency to very high. W
certain types of materials, or in certain frequency ranges, Maxwell’s equations can be redu
specialized forms that are more convenient to work with. One such form is the eddy curren
tion for good conductors.

2.1. The Eddy Current Equation and Associated Phenomena
Within a linear, isotropic conducting material, the current density is given simply by Ohm’s 

where  is the conductivity of the material. For highly conductive materials such as copp

value of  is on the order of . This causes the conduction term (first term on the
hand side) of Maxwell’s second equation (2) to dominate over the displacement current term

ond term on the right hand side) up to extremely high frequencies, on the order of . T
fore, for electronic circuit designs it is generally safe to ignore the second term in (2) and r
it simply as
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By taking the curl of (1) we can eliminate the magnetic field from (3), which gives the basic elec-
tromagnetic equation for good conductors:

(4)

This is called the eddy current equation, because its solutions always consist of currents (and
associated electric fields) that form closed loops, similar to the whirlpools that form when water is
forced to flow around an obstacle.  If there are external current sources applied to the conductor,
then these loops may only close if we consider the external source to be part of the loop.

The solutions of the eddy current equation have some other well-known properties:

• Skin effect: At moderate to high frequencies, we observe that the current in the conducto
flows almost entirely near its surface in a region whose thickness is called the skin depth. The 
skin depth  decreases with increasing frequency according to the relationship

(5)

• Surface impedance: It can be shown that the total current  flowing beneath the surface 

the conductor within the skin depth region can be related to the electric field  on the c

ductor surface by the relation , where  is the surface impedance, given by

(6)

This is a microscopic phenomenon—relating the electric field at a point to the total curr
directly beneath that point. However, it gives rise to similar effects on a large scale: we 
observe that at a sufficiently high frequency, conductors exhibit a net resistance that inc
as the square root of frequency.

• Proximity effect: The current flowing within a given conductor produces a magnetic field (
equation (2) above) that surrounds it. If another conductor is brought into the neighborho
the first, these magnetic field lines impinge upon the second conductor. Equation (1) ind
that if the frequency is nonzero, these magnetic fields will induce an electric field (and h
a current) to develop within the second conductor. The currents that flow in the second 
ductor in response to the current in the first are called induced currents. If the frequency is 
moderate to high, then most of these induced currents flow near the surface in a skin d
region. In addition, these currents will tend to be strongest on the side of the second con
closest to the first—a phenomenon known as the proximity effect.
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2.2. Eddy Current Calculations in Spicelink

Both Maxwell Q3D Extractor (Versions 4.0 and 4.5) and Maxwell 2D Extractor (Versions 1.0
through 4.5) attempt to capture eddy current effects. Q3D does this when solving for AC Induc-
tance/Resistance problems, and 2D Extractor performs eddy current calculations when solving for
Impedance. The eddy current calculation in 2D Extractor is the more rigorous; a 2-dimensional
version of the eddy current equation (4) is solved using a finite element method. The calculations
in Q3D Extractor are not a true solution of (4), but are rather based upon the surface impedance
formula in (6). That is, Q3D Extractor’s AC Inductance/Resistance calculation assumes th
frequency is sufficiently high to approximate the conductor current as a surface current di
tion. This surface current distribution must satisfy Maxwell’s equations (1) and (2), with
restriction that the displacement current term in (2) is negligible. After a suitable set of s
currents has been calculated, the surface impedance formula is employed to calculate th
tance matrix for the structure. The process for resistance calculation is discussed in the fo
sections.

2.3. Calculation of AC Resistances for Single Conductor Problems

Recall from basic circuit theory that the power  dissipated in a circuit element a

instant in time  is given by the product , where  and  are respectivel
instantaneous voltage across the element and the current through it. For electromagnet
lems, power is dissipated throughout the body of the conductor, so we introduce the conce
power density  at a given point in space. The power density is calculated in an ana
way to the power in circuit theory, by multiplying the instantaneous values of the electric
(analogous to voltage) and the current density (analogous to current.) This is known as Joule’s

law. The power density is measured in  rather than Watts.

The eddy current equation (4) is a complex phasor equation. The phasor  represents the
direction, magnitude and phase of the electric field, which is assumed to be a time-varying, sinu-

soidal quantity. For a good conductor, the current  is also a phasor, and is in phase with

. To compute the time-average power being dissipated at a single point in space, we must multi-
ply the instantaneous current density and electric field at that point, integrate over a single period,
and then divide by the length of the period. The result of this calculation is the time average power
density , given by

(7)

Here, the (*) superscript denotes the complex conjugate operation. Equation (7) is similar to the
formula from basic circuit theory for the average power dissipated in a circuit element:
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For a simple real-valued resistor,  and this equation reduces to .

Having obtained the formula for the power dissipation at a single point, we can compute the
total average power  being dissipated within a given conductor by integration. We have

. (8)

where  denotes the volume of space occupied by the conductor.

Suppose that we have a problem that consists of a single conductor. We can attach a 1 Amp
sinusoidal current source across the conductor and solve for the current distribution (or equiva-
lently the electric field pattern) in it using a field solver. Then we can recover the total power dis-
sipated within the conductor using (8). Now in order to compute the resistance of the conductor,
the result from (8) must agree with the power dissipation expected from circuit theory, namely

. But since , this implies that

. (9)

Maxwell 2D Extractor uses exactly this sort of integral to compute the resistance of a single-
conductor problem. Q3D uses a similar formula, but with surface currents and surface imped-
ances replacing the electric field and conductivity:

. (10)

In the next section, we consider the problem of computing resistances (both self and mutual)
in systems of multiple conductors.
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3. Resistance Calculations for Multiple Conductor Problems

Consider now a system of two different conductors excited by two independent AC current
sources  and  as shown below in Figure 1.

If we consider for a moment the DC case, then we expect that the two conductors each have a
self-resistance, which can be computed by turning on the associated current source and computing
the power dissipation in that conductor. For example, we could set A and  and

compute the power dissipated in conductor 1. Then by applying (9), we can compute the self-
resistance of conductor 1, . Because we are at DC, there will be no induced currents in the

other conductor, and hence no power dissipation there. Therefore it would be sufficient to carry
out the integral in equation (9) over only the volume of conductor 1.

If we raise the frequency, then the story is somewhat different. Even if , there will still

exist some induced currents in conductor 2. This gives rise to some power dissipation in that con-
ductor as well. This phenomenon is known as induction heating; it is often employed in industrial
processes where precise amounts of heat are to be delivered to a conductive object. 

Therefore we see that the true total power dissipation must be computed by extending the
domain of the integral in (9) to both conductors. The added power loss in the second conductor
will increase the self-resistance of conductor 1 above the value that it would have had in isolation.
(Indeed, even if conductor 1 had infinite conductivity, it would still exhibit a non-zero self-resis-
tance due to the presence of the nearby, finite-conductivity object!) Our new formula for power
dissipation is 

(11)

I1 I2

I1 I2

Figure 1. A pair of conductors excited by two independent AC current 
sources will be used to illustrate the mutual resistance concept.
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where  denotes the combined volumes of conductors 1 and 2.

Consider now what occurs in the AC case when we set  and . This produces

distributions of electric field  and corresponding current density  that satisfy the eddy cur-

rent equation (4). If instead we set  and , we would get a different set of fields

 and  that again satisfy (4) as well as the applied boundary conditions. Because we have

assumed that the materials involved have linear conductivities (independent of the electric field),
the field solutions are linear in  and . Therefore, if we apply an arbitrary combination of the

two external current sources, we will get a total field solution that is a weighted sum of the two:

Let us now evaluate the power dissipation for this general problem. From (11) we have

The squared magnitude of the sum of two complex numbers is given by the identity

Therefore we can write the total power as the sum of three terms:

(12)

where

(13)

(14)

. (15)
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Even though  and  are complex-valued, the quantity  in (15) can be shown to be a real

number. This permits us to drop the  operator from the expression.

We now consider the meaning of the total power expression in (12). The first two terms are
familiar: the coefficients  and  are the self-resistances of conductors 1 and 2, which we

could have computed from formula (11) by turning on one current source (  or ) at a time. The

third term, however, can be a bit surprising: it clearly represents an additional power dissipation
that occurs only if  and  are both non-zero. The physical interpretation is that the electric

fields  produced by application of current source  interact with the (direct and induced) cur-

rents  produced by the application of the source  to produce some extra power loss.

The constant  has units of Ohms, and is known as the mutual resistance between the two

conductors.

3.1. Negative Mutual Resistance
It is possible—in fact, quite common—to encounter situations where the mutual resista

a negative number. This is very reasonable. Looking back at equation (12) for the total pow
sipation, and assuming for the moment that both  and  are positive real numbers, we s

a negative value of  would indicate that total power dissipation with both current so

active is lower than it would be if we added up the power values calculated with each one t
on by itself.

Of course there is a limit to how negative the mutual resistance can be. The total power dissi-
pated cannot be negative (a conductor cannot generate power.) It is possible to sho

 is the necessary condition for keeping the total power dissipation positive.

4. An Equivalent Circuit Model for Mutual Resistance

In this section we give an interpretation of the mutual resistance in terms of circuit elem
We propose the following circuit model for the self and mutual resistance effects in a two-co
tor system:

(16)

An equivalent representation using the resistance matrix would be

E1 E2 R12

Re( )

R11 R22

I1 I2

I1 I2

E2 I2

J1 σE1= I1

R12

I1 I2

R12

R12 R11R22<

V1 R11I1 R12I2+=

V2 R12I1 R22I2+=
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It is important to stress that the model proposed in (16) only attempts to represent the “res
component of the voltage drop across the two conductors. There is an additional “inductive
ponent to that voltage drop, described by the self and mutual inductances of the conduct
will ignore the inductive part for now so that we can focus attention on modeling the res
effects.

Here we have introduced the voltage drops  and  that appear across the independen

sources  and , respectively (see Figure 1 for sign conventions.) There are many d

ways that one could attempt to define “voltage” for a high-frequency situation. The probl
complicated by the presence of magnetic fields, which means that the “voltage drop” betwe
points depends to some extent upon the path that we take between those points. Rat
choose a particular path between the ends of the current sources, we instead demand that
ages in our circuit model predict the same amount of power dissipation as the detailed e
magnetic field solution. The model proposed above in (16) does this, as we now show.

Consider using circuit theory to compute the total power dissipation of the model in (16
know that the average total power will be given by

(17)

That is, we expect that the power dissipated by the circuit model is going to be equal to the
being delivered by the two current sources  and . Using (16) in this expression to elim

 and  results in

(18)

This does indeed agree exactly with the expression in (12) that we derived from electromag

To achieve agreement between the predicted power loss in the circuit model and the e
magnetic solution, we had to posit an additional voltage drop in each conductor due to a 
flowing in the other one. The simplest way of achieving this effect with simple two-termina
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Figure

cept of
cuit elements is to add a dependent source (a current-controlled voltage source) in series with the
self resistance (Figure 2.)

 Another possible way to model the mutual resistance is to convert the circuit model in Figure
2 into a Norton equivalent model. Instead of a series-connected dependent voltage source, we end
up with a parallel-connected dependent current source (Figure 3). Maxwell Spicelink uses the

Norton equivalent model to produce Spice equivalent circuits with mutual resistance, because
Spice can simulate these models more efficiently than the Thévenin equivalent circuits of 
2.

5. Common Mistakes in Using Mutual Resistance

This section discusses a few common mistakes encountered when dealing with the con
mutual resistance.

+
_

+
_

+

_

V2
V1

+

_

R11 R22I1 I2

R12I2 R12I1

Figure 2. A straightforward circuit model of the mutual and self 
resistances for a two-conductor problem.

R12

R11
--------I2

R12

R22
--------I1

Figure 3. A Norton equivalent circuit model for the mutual resistance 
effect.

+

_

V1

+

_

V2

I1 I2

R11 R22
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5.1. Zero Mutual Resistance
The term “mutual resistance” sometimes gives rise to confusion because the person he

envisions two resistors with an additional resistor connected between them. This picture is
rect. Once a person falls into this fallacy, he may conclude that an “infinite” value of mutual 
tance is required in order to maintain electrical isolation between the two conductors.

As we have seen, the presence of a mutual resistance between two conductors does n
the existence of a conductive path between them; rather, it indicates that the two conductor
ence the power dissipation in one another through induced eddy currents. In the speci
where , this does not mean that there is a zero-resistance connection between 

conductors. It simply indicates that no power loss or voltage drop is induced on one condu
the other. This situation is encountered often at DC, when the resistance matrix of two se
conductors is calculated. 

Indeed, we see from the circuit model of Figure 2 that the dependent voltage source
zero gain when , which means that they are equivalent to short circuits in series w

self-resistances. The two conductors are still electrically isolated from one another. In the N
equivalent model of Figure 3, the dependent sources would become open circuits, effe
removing them from the circuit. Again the two conductors remain isolated.

5.2. Mutual Resistance at DC
The mutual resistance is a frequency-dependent quantity. If we have two separate cond

the mutual resistance between the two decreases to zero as the frequency is lowered, bec
time-varying magnetic fields produced by one conductor (see equation (1)) are less and les
tive at inducing eddy currents in other nearby conductors.

It is possible for a non-zero mutual resistance to exist at DC—but only between two dif
conduction paths within a single conductor (or a collection of touching conductors.) In this
there are of course no induced currents, and so the mutual resistance is created by int
between direct conduction currents. Figure 4 illustrates a typical situation. As in earlier exa
the self and mutual resistances for this problem can be calculated using (13)-(15). We
choose to model this structure with the equivalent circuits from Figure 2 or Figure 3. Alt

R12 0=

R12 0=

I2I1

Figure 4. Mutual resistance can occur even at DC, if there are two or more 
conduction paths within the same conductive object.
10
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tively, the T network model of Figure 5 could be used. This is permissible because there really
does exist a conduction path between the two sides. However, to use the T model we must be pre-
pared to accept negative valued resistors in our model. Also, it is difficult to generalize the T
model to cases with more than 2 conductors. Therefore Maxwell Spicelink continues to use the
Norton model of Figure 3 to represent such structures.

6. Where Mutual Resistance is Important

We now present an example to show why it is important to model the mutual resistance effect.
The problem is a simple one: a pair of straight conductors, as shown in Figure 6 below. The con-
ductors are copper, embedded in a vacuum. The conductors are 100 mm long, 20 mm wide and 10
mm high; the separation between them is 10 mm. This geometry was entered into Maxwell Q3D

Figure 5. A T-network can be used to model the self and mutual resistance 
between two conduction paths within the same conductor.

I1 I2

R11 R12– R22 R12–

R12

Figure 6. An example with two nearby conductors.
11



Extractor and solved for AC Inductance/Resistance at 100 MHz. A seeded mesh with 1224 trian-
gles was used and 5 adaptive multipole passes were run. The resulting resistance matrix (in mΩ)
was 

We see that the mutual resistance is negative, and in magnitude about one tenth the value of
the self resistance. To see why this could be significant, we consider the problem of calculating
the resistance formed by closing the loop between the two conductors as shown schematically in
Figure 7.

We apply the current source  and measure the resulting voltage drop ; the ratio between the
two will be the resistance of the loop. Due to the connections made, we have

Therefore the voltage is

R 5.30 0.48–

0.48– 5.33
mΩ=

I

+ _

+ _

V1

V2

I1

I2

Figure 7. The two conductors are shorted at one end and driven by a current 
source I at the other in order to compute the overall loop resistance.

+

_

V

I V

V V1 V2–=

I1 I2– I= =

V R11I R12I–( ) R12I R22I–( )– R11 2R12– R22+( )I= =
12



and thus the overall resistance is , or 11.59 mΩ. This should be compared

to the value that we would have obtained if we had ignored the mutual resistance and simply
added the self resistances:  is just 10.63 mΩ. The resulting error is on the order of 10%.

It is interesting to note that the effect of the negative mutual resistance is to add to the overall
resistance of the loop. This should be contrasted with what occurs in calculating the loop induc-
tance of the structure: the partial mutual inductance between the conductors is positive, which
implies that it contributes to a reduction in loop inductance.

7. Summary and Conclusions

This note has discussed the mutual resistance phenomenon.  We reviewed the electromagnetic
theory that gives rise to the mutual resistance, and introduced circuit models that describe this
effect. We also used an example to point out that the mutual resistance effect is not only of theo-
retical interest; correct accounting for mutual resistance can significantly improve the accuracy of
total resistance calculations.

In our examples, we have focused solely on 1 and 2-conductor problems, but the results we
have presented and the circuit models we have described can be generalized easily to systems
with arbitrary numbers of conductors.

R R11 2R12– R22+=

R11 R22+
13
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