A Practical Method for 3D-Modeling of Glass Weave

Kenji Nonaka, Sony LSI Design Inc. Takuro Nakamura, Sony LSI Design Inc. Kazuya Sawada, Sony LSI Design Inc.

January 28–30, 2020

#DesignCon

Contents

Introduction

- o Glass weave effect
- Features of our modeling method
- Related Work
- Outline of proposed method
- A practical method for 3D-modeling of glass weave
 - Proposed method for modeling glass weave
- Experimental board and Measurement
 - o Modeling of surface roughness of copper foil
 - o Experimental board considering the influence of glass weave
 - o Comparison between measurement and simulation
- Conclusion

Introduction : Glass Weave Effect

Glass Weave Effect

Sdd21 / Scd21 is particularly affected at high frequency.

We need to design PCB with consideration of glass weave effect.

January 28–30, 2020

Introduction : Feature of our modeling method

Requests to us on the consumer product design

Our Needs

Short TAT and "A Simple" Verification Method" for glass weave

Introduction : Related Work

Some methods based on measurement

Test Boards & Measurement

January 28-30, 2020

 The simulation with glass weave Simulation model of physical glass weave

Introduction : Outline of proposed method

Distribution of Relative permittivity

Expressed mathematics distribution of relative permittivity

- Simulation time is as short as the conventional method.
- Appropriate correlation between measurement and simulation

January 28–30, 2020

6

Contents

Introduction

- o Glass weave effect
- o Features of our modeling method
- o Related Work
- o Outline of proposed method
- A practical method for 3D-modeling of glass weave
 - Proposed method for modeling glass weave
- Experimental board and Measurement
 - o Modeling of surface roughness of copper foil
 - o Experimental board considering the influence of glass weave
 - o Comparison between measurement and simulation
- Conclusion

Modeling Flow

• The flow of proposed method for modeling glass weave General information of dielectrics

Calculation of glass weave pitch

 60 bundles of glass fibers exist per one inch horizontally and 47 bundles vertically in Type-A case below.

Relative

permittivity

4.0

4.4

v=540um

Type

Type-A

Type-B

Weave

Density

[bundle/inc]

60 x 47

60 x 58

January 28–30, 2020

Glass/resin

Ratio

33:67

49:51

informa markets

9

Min, max value of relative permittivity

We need to know the relative permittivity of resin and glass respectively

to calculate ε_{min} and ε_{max} .

Equation about relative permittivity

• The relative permittivity of resin and glass can be calculated from the equation below.

Calculation of ε_{min}

- Calculation of ε_{min} values = εr_resin
 - Using at least two types of board structures with same materials, the relative permittivity of resin and glass can be calculated.
 - *er_board* = *er_resin* × *volume_ratio_resin* + *er_glass* × *volume_ratio_glass*

Calculation of ε_{max}

Distribution of relative permittivity

Simulation using 3D EM solver

Comparison of analysis time between A and B

- o Case1 and case2 is almost same both analysis time and used memory
 - Our request is satisfied.

Contents

Introduction

- o Glass weave effect
- o Features of our modeling method
- o Related Work
- o Outline of proposed method
- A practical method for 3D-modeling of glass weave
 - o Proposed method for modeling glass weave
- Experimental board and Measurement
 - Modeling of surface roughness of copper foil
 - o Experimental board considering the influence of glass weave
 - Comparison between measurement and simulation
- Conclusion

Verification Flow

The following 2 processes for verification of proposed method

Measurement environment

- Network Analyzer, Coaxial Cable, RF Probe
- Frequency range for measurement : 10MHz-30GHz
- Calibration was used SOLT method.
- The calibration plane was placed on the edge of RF probes.

Calibration Board/DUT

January 28–30, 2020

informa markets

Experimental board of single-end trace

-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
																																			-

- Board: Six-Layer Through hole via
- Relative permittivity: 4.4 (1 GHz)
- Tanδ: 0.01 (1 GHz)
- Microstrip Line
- Line Length: 100 mm

Modeling methods of surface roughness

 The following main three methods were checked comparison between measurement and simulation.

Modeling Method	Input information	Feature
Groisse	Rq (Root mean square of surface roughness)	Getting input information is easy. Accuracy is not high.
Huray	Radius of particle Surface Area Index	Getting input information is difficult. Accuracy is high.
Cannonball-Huray	Rz(Max height of surface roughness)	Getting input information is easy. Accuracy is high.

January 28-30, 2020

Simulation accuracy for single-end trace

The comparison between measurement and simulation

- The accuracy of *Huray* and *Cannonball-Huray* is very good.
- The accuracy of *Groisse's* method is not good.
- We selected Cannonball-Huray method.

Verification Flow

The following 2 processes for verification of proposed method

Diagonal differential traces

- Measurement and simulation accuracy check for 3Dmodeling of glass weave
 - $\,\circ\,$ We did two kinds of experiments.
 - The first experiment was to check the effect of diagonal traces.

Measurement results of diagonal traces

- The skew tends to decrease as the trace angle becomes bigger.
- The result is as expected.

25[™]ANNIVERSARY

24

Simulation accuracy for diagonal traces

The comparison between measurement and simulation for diagonal traces

o Good correlation between measurement and proposed method, especially about Scd21.

Position-shifted traces

Measurement and simulation accuracy check for differential trace

January 28-30, 2020

- $\,\circ\,$ We did two kinds of experiments.
 - The second experiment was to check the skew variation when the positional relationship between glass weave and differential pairs changed.

The second experiment

26 🔇

Measurement results for position-shifted traces

The results of experimental boards

◦ Each differential pair has different skew, and the change of skew looks like periodic.ª

Positional relationship between glass and traces

Verification of

Modeling of Glass weave

Verification of

Modeling of Loss Factors

 The difference of relative permittivity between POS and NEG makes the intra-pair skew.

Difference between measurement and simulation

The comparison between measurement and simulation

for position-shifted traces

- The range of skew change by position shift is different between measurement and simulation.
- o The measured skew is smaller than expected.

A hypothesis for the cause of difference

A hypothesis

 The small angle between glass weave and test board itself can be a main cause of this difference. First Step Second Step Verification of Modeling of Loss Factors Modeling of Glass weave

The small angles was able to make the intra-pair skew as small as the measurement results.

Verification of the hypothesis

TDR results for 5 degrees angled traces

33 🔘

informa markets

$\frac{\frac{5}{5500}}{450000} \frac{100}{100} \frac{150}{100} \frac{200}{250} \frac{250}{300} \frac{100}{100} \frac{100}$

4o4 6 2 singl

The hypothesis that there is small angle between board and glass weave looks like correct.

TDR result of 0 degree traces

January 28-30, 2020

XY Plot

• The angle is approximately 0.5 degrees.

70.00

65.00

60.00

• This value can be calculated by the length of the traces and the period of impedance reversing.

TDR results for 0 degree traces

Simulation accuracy with small angle

 The simulation results becomes much closer to the measurement results by applying small angle between the traces and glass weave.

January 28-30, 2020

Second Step

Verification of

Modeling of Glass weave

(i) informa markets

34

Verification of

Contents

Introduction

- o Glass weave effect
- o Features of our modeling method
- o Related Work
- o Outline of proposed method
- A practical method for 3D-modeling of glass weave
 - o Proposed method for modeling glass weave
- Experimental board and Measurement
 - o Modeling of surface roughness of copper foil
 - o Experimental board considering the influence of glass weave
 - o Comparison between measurement and simulation
- Conclusion

Conclusion

- We proposed a practical method to make models of glass weave for 3D EM solver.
- In this method, the required information can be obtained easily from board material manufacturers.
- The analysis time of EM solver is not increased when the proposed method is applied.
- We also confirmed there was enough correlation between simulation and measurement result.

Thank you!

QUESTIONS?

