Welcome to

25THANNIVERSARY **DESIGN CON® 2020** WHERE THE CHIP MEETS THE BOARD

Expo

Conference

January 28 - 30, 2020

January 29 - 30, 2020

Santa Clara Convention Center

#DesignCon

Hybrid PEX Flow for 2.5D Si-Interposer SerDes Signal Channel Model Extraction by Considering High Loss Silicon Substrate Effects

Jun So Pak, Samsung Electronics Co., Ltd. junso.pak@samsung.com

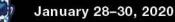
Bo Pu, Gibak Han, Wonyoung Kong, Ingun(Lars) Jung, Sungwook Moon, Samsung Electronics Co., Ltd. {bob.pu, gibak.han, wy0217.kong, ingun.jung, sw2013.moon}@samsung.com

#DesignCon

Contents

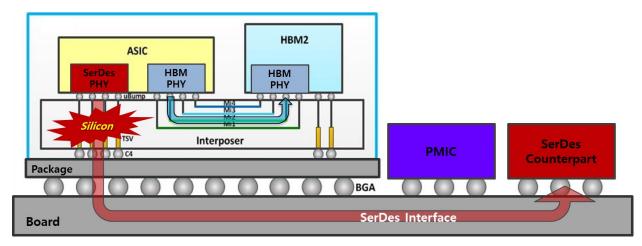
Background & Motivation

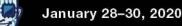
- HPC (high performance computing) Chip on Si-Interposer due to HBM (high bandwidth memory)
- What is the Critical Component in SerDes Si-Interposer Channel? 0


TSV

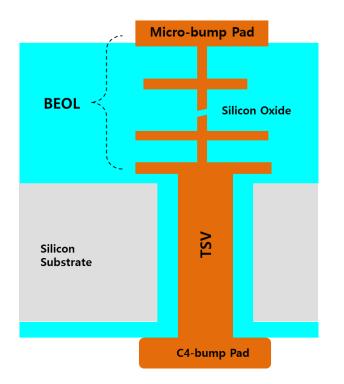
- TSV(through silicon via) with MIS (metal-insulator-semiconductor) or MIM (metal-insulator-metal) Structure 0
- Freq. Dependent IL (insertion loss) Characteristics 0
- Limitations of Conventional PEX Flow to Si-Interposer SerDes Channel Model Extraction 0

Proposed Hybrid PEX Flow for Si-Interposer SerDes Channel

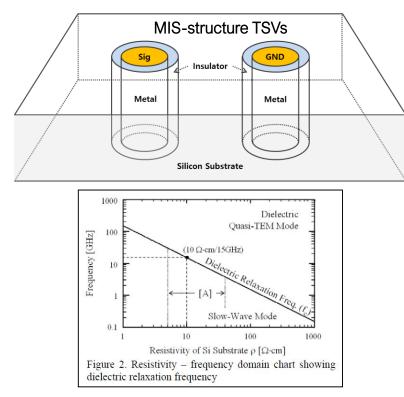

- Key Difference referring to Silicon Substrate between Conventional & Proposed Hybrid PEX Flow 0
- What makes Proposed Hybrid PEX Flow Important for Si-Interposer SerDes Channel? 0
- Proposed Hybrid PEX Flow
- Summary



HPC Chip on Si-Interposer


- SerDes Si-Interposer Channel Configuration for External Connection
 - [Micro-bump ~ BEOL (back-end of line) ~ TSV ~ C4-bump] ~ PKG ~ BGA ~ Board
 - Well-known Critical TSV to SI Performance of High-speed Si-Interposer Channel (PCIe Gen4/5, SerDes 56G/112G)
 - How about **BEOL & C4-bump** Impact on the HSI Channel?
 - How to Extract High-Freq. Resistances & Capacitances of BEOL & C4-bump ?

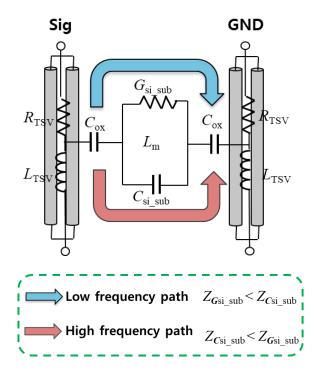
How to Extract High-Freq. Model Parameters of BEOL & c4-bump?


- Model Parameters •
 - Micro-bump Pad
 - Resistance / Capacitance / Inductance?
 - Conventional PEX Flow can cover? or 3D Full-wave Tool?
 - BEOL & Silicon-Substrate
 - Resistance / Capacitance / Inductance? ٠
 - Conventional PEX Flow can cover? or 3D Full-wave Tool?
 - TSV & Silicon-Substrate
 - Resistance / Capacitance / Inductance by Well-known 3D Full-wave Tool ٠
 - Conventional PEX Flow can cover?
 - C4-bump Pad & Silicon-Substrate
 - Resistance / Capacitance / Inductance by Well-known 3D Full-wave Tool ٠
 - How about Silicon-Substrate Effect on BEOL?
 - Same BEOL Environment as TSVs
 - 3D Full-wave Tool can cover? ٠
 - **Reasonable Flow considering Design Complexity?** ٠



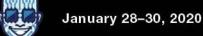
Remind TSV Model Parameters

[1] J. S. Pak, et al.," Slow wave and dielectric quasi-TEM modes of Metal-Insulator-Semiconductor (MIS) structure Through Silicon Via (TSV) in signal propagation and power delivery in 3D chip package," in 2010 ECTC, Las Vegas, NV, USA, 2010.

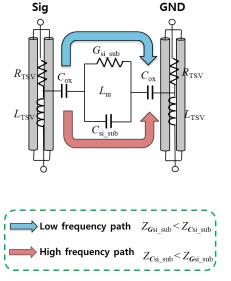

- TSV (Through Silicon Via)
 - MIS-structure
 - Metal-Insulator-Semiconductor
 - Metal (TSV barrel) surrounded by Insulator (Silicon Oxide) in Semiconductor (Silicon Substrate)
 - TSV Electrical Characteristics following Slow-Wave Mode
 - Large Capacitance & Low Inductance due to Silicon Substrate
 - Model Parameters
 - Resistance: TSV itself, Silicon Substrate (Small Conductivity)
 - Capacitance: MIS Capacitance between TSV & Silicon Substrate,

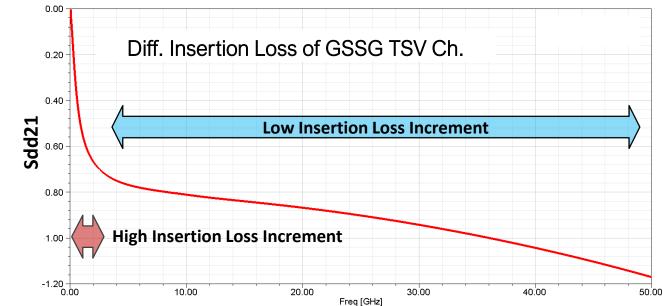
Silicon Substrate Capacitance between Two TSVs

- Inductance: Two Signal & GND TSVs' Loop Inductance
- Slow-Wave Mode @ TSVs
 - Coming from Shunt LARGE Resistance & SMALL Capacitance of Silicon Substrate between Two TSVs
 - Due to Small Conductivity Silicon Substrate
 - Resulting in Freq. Dependent Electrical Characteristics

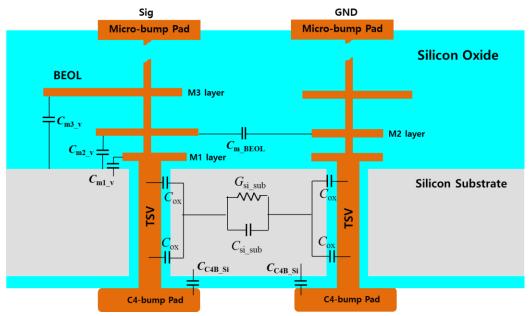

Freq. Dependent Electrical Characteristics of TSV Model

- TSV Model
 - Key TSV Model Parameters for Signal Insertion Loss
 - Parameters of Signal Path from Signal TSV to GND TSV
 - Signal TSV MIS Cap; C_{ox} → Silicon Substrate Conductance; G_{si_sub} & Capacitance; C_{si_sub} → GND TSV MIS Cap; C_{ox}
 - Low Impedance Path between Signal & Ground TSVs
 - @ Low Freq. ()


- $Z_{Sig_{GND}_{low_{freq}}} \sim 1/(j\pi C_{ox})$
- High Insertion Loss Increment ($C_{ox} > 10xC_{si_sub}$)
- @ High Freq. ()
 - $z_{Gsi_{sub}} > z_{Csi_{sub}}$
 - $Z_{Sig_GND_high_freq} \sim 1/(j\pi C_{si_sub})$
 - Low Insertion Loss Increment

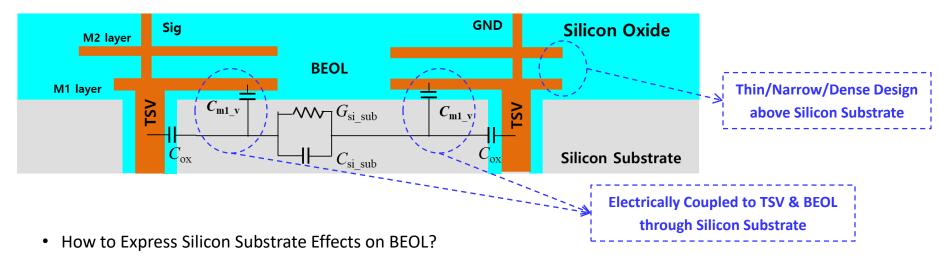


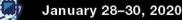
Freq. Dependent Electrical Characteristics of TSV Model



January 28-30, 2020

How about BEOL & C4-bump Pad?


- **BEOL & C4-bump Pad** ٠
 - Electrically Coupled to Silicon Substrate through Silicon Oxide = Same as TSV _
 - C4-bump Pad: Large Dimension & Model Extraction with TSV by 3D Full-wave Tool
 - **BEOL**: Thin Metal Layer & Narrow Strap-type Power/GND Design & High Density/Complex Design \rightarrow What Tool? _



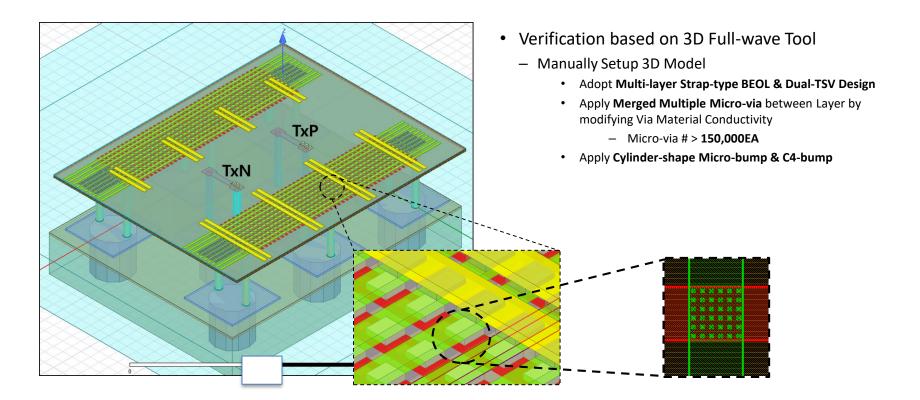
BEOL coupled to TSV & BEOL through Silicon Substrate

- Conventional PEX Flow
 - Can extract C_{mN v} (BEOL MIS Cap) values
 - BUT, those extracted C_{mN v} are combined into Single Node → NOT Connected to each related Silicon Substrate Gsi_sub & Csi_sub!!!
 - Impossible to express High Freq. Characteristics
- 3D Full-wave Tool
 - Can express partial design \rightarrow NOT extract All C_{mN_v} (BEOL MIS Cap) values
 - Impossible to apply real Si-Interposer Design with Reasonable Reiew TAT (turn-around time)

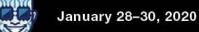

Need BEOL Modeling Flow during TSV Modeling → Hybrid PEX Flow


- **Proposed Hybrid PEX Flow** instead of **Electrically Isolating** Conventional PEX Flow for BEOL & TSV
 - Adopting Conventional PEX Flow
 - Apply R-Only PEX Option to Si-Interposer Design
 - Extract Signal/Power/GND Partial Resistances of Micro-bump Pad, BEOL (Strap/Via), & C4-bump Pad
 - Assign short connection path to TSV between M1 Layer to C4-bump Pad
 - **Convert** Partial Resistances to S-parameter by assigning Ports to Signal-GND & Power-GND at Micro-bump & C4-bump Sides separately
 - Enabling 3D Full-wave Tool to deal Interactions among BEOL, Silicon Substrate, & TSVs
 - Convert M1 Layer Strap Design to Solid Design for letting 3D Full-wave Tool solve BEOL
 - Consider Multi-layer Strap Design (M1, M2,,,,MN) MIS Cap almost SAME as M1 Layer Solid Design MIS Cap
 - Consider Simple Vertical Structure of Si-Interposer SerDes Channel for minimizing Loading Capacitance

While Complex Power/GND Design

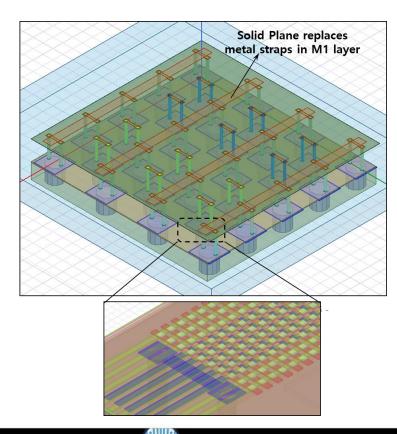

Apply Micro-bump & C4-bump Structures for including their Parameters & minimizing Port Parasitic Cap

Proposed Hybrid PEX Flow Verification


12 🔘

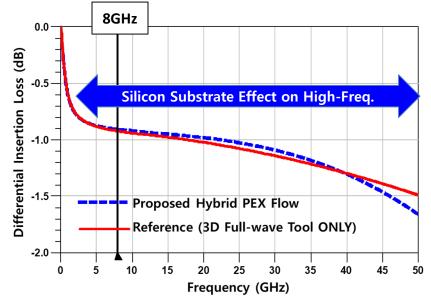
M1 Layer Solid MIS Cap vs Multi-layer Strap MIS Cap

	Cm_v (Verical Cap)	Cm_s (Sidewall Cap)	Total Cap
Strap Design (BEOL All Layers)	82%	18%	100%
Proposed Solid Design (M1)	102%	2%	104% (Conservative)
Difference	+20%	-16%	+4% (Reasonable)

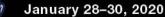

- Comparison MIS Cap of Proposed Solid M1 Design & Original Strap Multi-layer Design
 - Proposed M1 Layer Solid Converting Method well cover Original Design MIS Cap Value
 - Show 4% Conservative & Reasonable Result
 - Use Simple Capacitance Calculation Equation such as Cap = εx [Overlap Area] / [Oxide Thickness]
 - NOT consider Signal-GND capacitance because of Long Distance & Thin BEOL Area
 - 3D Full-wave Tool
 - * Can express partial design \rightarrow NOT extract All C_{mN_v} (BEOL MIS Cap) values
 - Impossible to apply real Si-Interposer Design with Reasonable Review TAT (turn-around time)

Proposed M1 Layer Solid Design

- Proposed M1 Layer Solid Design
 - Let Larger Design Area Analysis Possible
 - C4-bump #: 8 → 32
 - Power Net Included
 - Small Design Review TAT \rightarrow Good to Design Optimization
 - Weak Point
 - Many Manual Jobs \rightarrow High Human Error Risk
 - Long Initial Design Setting
 - Still, Partial Design Analysis
 - NOT YET, Measurement Correlation

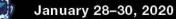


January 28-30, 2020

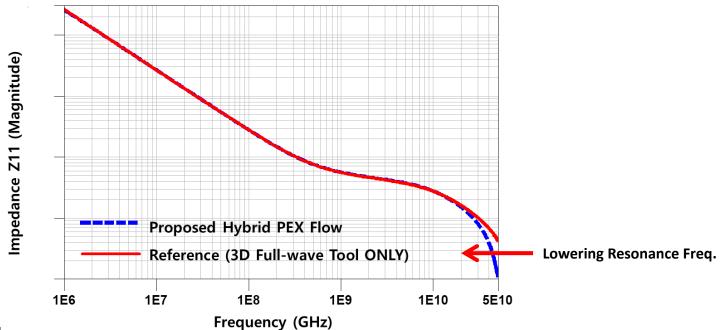

14 O informamarkets

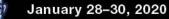
Comparison Sdd21 of Hybrid PEX Flow vs 3D Full-wave Tool Only

- Hybrid PEX Flow
 - Well Agreement with 3D Full-wave Tool Result
 - Hybrid PEX Flow shows the Discrepancy owing to Over-estimated Inductance Value from Conventional On-chip PEX Tool
 - NOT Apply Inductance option \rightarrow MUST Consider Mutual Inductance

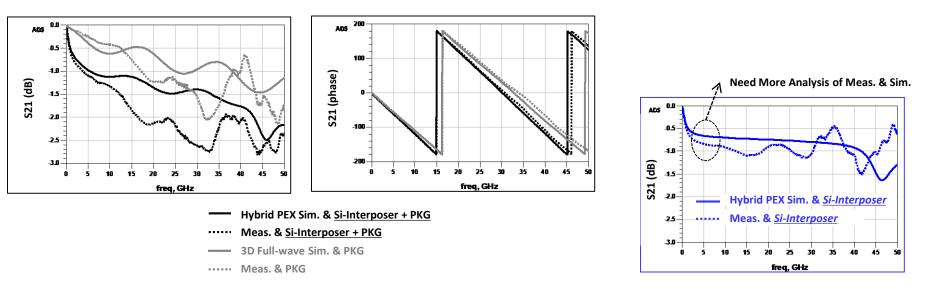

Comparison Sdd21 in Log-scaled X-axis

• Hybrid PEX Flow


- Well Agreement in DC Level



Comparison Z11


- Hybrid PEX Flow
 - Well Agreement in Capacitance & Resistance
 - But, Over-estimated Inductance lowers Resonance Freq.

Measurement vs Proposed Hybrid PEX (TSV+PKG)

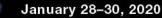
- Hybrid PEX Flow
 - Interposer: BEOL + TSV + C4-bump \rightarrow Differences from the previous Results come from Different BEOL Design. (Smaller Cap)
 - Overall Differences between Measurements & Hybrid PEX Simulation mostly come from PKG modeling
 - Need more Analysis for Simulation: Probing Pad Effects, Insulator Thickness, & Silicon Substrate Conductivity

Summary

@ Background & Motivation

- o HPC Chips on Si-Interposer need SerDes Channel including BEOL, TSV, & C4-bump Pad
- Their Larger Capacitances can be up to 1 pF & Critical Component to SerDes Si-Interposer Channel

• @ Remind TSV Model Parameters


- o BEOL, TSV, & C4-bump Pad have MIS (metal-insulator-semiconductor) Structure
- o Their IL shows Freq. Dependent Characteristics due to Silicon Substrate and Consequent MIS Cap
- o Important to SerDes Cannel because SerDes Nyquist Freq. over 10GHz
- o Conventional On-chip PEX Flow gives Wrong way to Si-Interposer SerDes Channel Design

@ Proposed Hybrid PEX Flow for Si-Interposer SerDes Channel

- o For SerDes Si-Interposer Channel, High Freq. Electrical Performance must be well estimated
- o Adopt Conventional On-chip PEX Flow for modeling Resistance only of BEOL & C4bump Pad
- Adopt 3D Full-wave Tool for modeling Silicon Substrate on BEOL, TSV, & C4-Bump Pad by converting Strap-type M1 Layer Design to Solid-type M1 Layer Design

Proposed Hybrid PEX Flow shows Reasonable Results

Thank you!

QUESTIONS?

