
DesignCon 2013 

 

 

 

 

 

 

 

 

 

 

 

Analytic Solutions for 

Periodically Loaded 

Transmission Line Modeling 
 

 

 

 

 

Priya Pathmanathan, Intel Corporation 

priya.pathmanathan@intel.com 

 

Paul G. Huray, University of South Carolina  

huray@sc.edu 

 

Steven G. Pytel, ANSYS Inc. 

steve.pytel@ansys.com 
 

 

 

 

 

 



Abstract 

 

The impact of periodic fiber-weave dielectric inhomogeneity on signal loss has been 

characterized through empirical methods in previously published literature.  In this paper, 

we present an analytic solution for periodically loaded transmission lines to model 

additional losses due to periodic loading.  We derive analytical equations based on 

Floquet-Bloch periodic wave propagation theory to predict additional transmission losses 

in evanescent frequency bands known as Brillouin zones in which we have treated a 

transmission line PCBs rotated from fiber weave fabrics as a periodic transmission 

medium and applied the theory to predict additional losses. Theoretical predictions have 

been correlated to 3D-EM simulations with complete fiber weave models and to high 

frequency VNA measurements up to 100GHz.  One of the primary outcomes of this work 

is fundamental analytical formula to predict the periodic loss profile of a given periodic 

structure geometry. This work provides a technique for inclusion of fast analytical 

algorithms in high-speed signal integrity simulation models to correct for additional 

periodic loss mechanisms. 
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Introduction 

 

Ever increasing digital signaling rates with faster rise and fall times, in accordance with 

Moore’s Law, demand higher and higher bandwidths from system interconnects, often in 

the sub millimeter wavelength regime. Therefore, understanding propagation properties 

and controlling loss mechanisms of interconnects is becoming critical to maintain the 

Signal Integrity (SI) of busses carrying critical digital data.  

 

Printed Circuit boards (PCBs), packages, flex cables, and connectors are the common 

interconnecting medium for modern computer systems that communicate between 

various processors and chipsets.  Typical PCB manufacturing processes embed layers of 

woven fiberglass cloth in resins to mechanically strengthen the PCB. Generally the 

fiberglass and resin have different electrical properties including dielectric strengths and 

constants. This difference creates a periodically loaded dielectric medium. PCB 

construction is not the only source of periodic loading in modern high speed signal 

interconnects. Routing through a pin grid array, placing surface mount discrete 

components near a signal net within a PCB or package, and braided shielding on cables 

are a few examples where periodic loading could potentially affect the signal integrity. 

 

In recent years, micro-scale (PCB) effects such as surface roughness and fiber weave 

effect have received closer attention. This is mainly due to the adverse impacts on loss 

characteristics of microstrip and stripline traces introduced by these effects at higher 

frequencies. Resonance effects on insertion and return loss profiles of PCB traces were 

observed several years ago but remained an unexplained mystery for a long time. 

Recently these resonances were verified through controlled experiments to rule out 

several possible factors including humidity effects, structural defects, and measurement 

equipment errors, as potential causes for these resonances [1]. Figure 1 shows the fiber 

weave resonances of a stripline test board recorded by researchers at Intel and the 

University of South Carolina.  

 

 

 

Figure 1 VNA Measurement of Insertion Loss on ISOLA 620 RTC Test Boards
 



 

 

Periodic loading effects due to fiber weave structure were identified as the cause for the 

resonances at certain frequencies and attempts were made to correlate the measurements 

to complete 3D electromagnetic field solvers[2][3].  For digital signaling channels 

operating at very high data rates (16GT/s and above) these periodically occurring 

discontinuities can cause large signal attenuation in certain stop band frequency regimes. 

The attenuation, in addition to conductor and dielectric losses, can dominate channel 

performance in certain frequency bands. These effects must be included in simulation 

models to yield accurate system simulation results. Currently available techniques [4] can 

predict the resonance frequency based on the multi-cell periodicity [MCP] of a rotated 

routing on a PCB. However, the usefulness of this technique is limited to simulation 

modeling applications, because of the fundamental assumption that a fiber weave 

medium can be approximated to a uniform dielectric medium. Effective dielectric 

constant is computed as a weighted average of glass and resin dielectric constant in these 

techniques. Because of this limitation, current techniques cannot be applied to predict the 

amplitude or bandwidth of the resonance. 

 

 

Analytical Approach 

 

Characterizing PCB transmission lines using parameterized models for dielectric and 

conductor loss is popular within the Signal Integrity (SI) community. Signal Integrity 

Simulation models can be generated using 3D EM simulations, measurements, and 

analytical techniques. However, measurements and 3D EM simulations alone are not 

practical for modeling micro scale periodic effects at a system scale. Measurements 

require high bandwidth equipment and test fixtures to accurately characterize the loss 

profiles. 3D EM simulations in many cases are also not practical due to the demand for a 

large amount of computing resources. Solutions to wave equations in a periodic dielectric 

medium were previously presented in [2] and [3]. This paper explains another, more 

practical, approach to the same problem. This paper introduces fundamental periodic 

transmission line theory and its application to transmission line modeling with special 

focus on fiber weave structures within a PCB. Proposed analytical techniques, combined 

with 3D simulations and/or measurements, can be employed to generate scalable models 

which accurately predict the additional losses due to periodic loading in transmission 

media. This theory can be extended beyond fiber weaves to any periodic loading 

conditions often observed in signal interconnects, such as routings through a Pin Grid 

Array (PGA). 

 

 

Below, we explain the fundamental theory by considering a Periodic Transmission line as 

a cascaded structure of unit cells characterized as an ABCD matrix. We apply the 

Floquet-Bloch theorem to form an eigen-value relation for periodic conditions.  

Evanescent frequency regions will be identified from the dispersion relation.  We use the 

Chebyshev Identity to derive the N
th

 power of a reciprocal ABCD matrix to cascade 



similar ABCD matrices. This analytic approach will be validated with a simple S-

parameter simulation using a SPICE simulator.  

 

 

We also propose schemes to approximate fiber weave geometry as a periodic unit cell. 

Periodic unit cells will be individually characterized by 3D-EM field solvers and 

additional periodic resonances are analytically computed with the aid of the developed 

theory. We also solve a complete 3D fiber weave model and compare the analytical 

predictions to complete full wave EM simulations. This will demonstrate the 

effectiveness in modeling by characterizing just a single unit cell to create scalable 

transmission line models with periodic loading.  

 

 

Periodic Transmission Line theory 

 

Wave propagation in one-dimensional periodic medium with two alternatively repeating 

materials is analogous to a wave propagating along a periodic transmission line 

composed of two discrete transmission line segments with different transmission 

characteristics. Equivalent transmission-line modeling is preferred to model PCB traces, 

which often support TEM and quasi-TEM modes of propagation. Using well-established 

measurement and simulation techniques, smaller homogeneous sections of the periodic 

unit cell can be characterized as a transmission line with characteristic impedance and a 

complex propagation constant. It is also common practice to characterize the transmission 

lines with R, L, G, and C quantities per unit length. 

 

 Figure 2 illustrates a two tone periodic transmission line composed of two types 

of transmission lines 1 and 2 characterized by unit length quantities of {R1,L1,G1,C1} 

and {R2,L2,G2,C2} respectively. Figure 3 defines a unit-cell with current and voltage 

measurement points (with respect to a common ground). 

 

 

 

Figure 2. A Two Tone Periodic Transmission Line 

 



 

 

Figure 3. Current and Voltage Definitions for a Periodic Unit-cell. 

Characteristic impedances and complex propagation constants of elementary transmission 

lines of the unit-cell can be expressed in terms of R, L, G, and C parameters [9] as 

 

 

 

(1) 

 

 
 

(2) 

 

 
 

(3) 

 (4) 

 

ABCD parameters for lossy transmission lines can be written for each elementary section 

as 

 (5) 

 (6) 

Voltages and currents of the unit-cell as defined in Figure 3 can be related using ABCD 

parameters as 

 (7) 



 (8) 

Eliminating  and  from Equations (7) and (8), yields 

 (9) 

 

By definition of ABCD parameters, Equation (9) forms a combined ABCD matrix for the 

whole unit-cell. The combined ABCD matrix is given by 

 (10) 

Generalizing the above result to an arbitrary n
th

 unit cell with ports ”n” and “n-1” yields a 

relationship between the voltages and currents of port ”n” and port “n-1” linked by an 

ABCD matrix as expressed by equation(11)  

 (11) 

 

where A, B, C and D parameters are given by 

 (12) 

 
(13) 

 (14) 

 
(15) 

 

Floquet-Bloch Theorem for Periodic Medium 

 

Floquet's theorem is a fundamental theorem explaining the concept of wave propagation 

in periodic media [5]. Floquet’s theorem states that if  represents a wave propagating 

in positive  direction of a periodic medium with periodicity p, then the following 

condition must be satisfied:                                   



( )   ( )pF z p e F z   (16) 

 

where is the periodic propagation constant. In general, the solution for  may be 

complex. Real and imaginary parts of  determine attenuation and propagation properties 

introduced by the periodic structure. Electric field intensity components in an infinite 

periodic medium with a periodic pitch of  satisfies 

 

 (17) 

 

We can apply Floquet’s result to relate currents and voltages separated by the period L as 

in equation (9) at the ports of the periodic unit-cell with an introduction of Bloch Wave 

Number k.  

 (18) 

 

In equation (18)   is the eigenvalue of the ABCD matrix. We can further simplify this as  

 (19) 

 (20) 

Assuming these transmission lines are reciprocal, we can apply the reciprocal property of 

the ABCD matrix which is given by . 

 (21) 

The sum of the roots of this quadratic function is 

 (22) 

 (23) 

Bloch wave number k can be expressed as an inverse cosine function as in Equation (24) 

 (24) 

This relation is also known as the Dispersion Relation. Expressing dispersion relation 

between  and as an inverse cosine function gives an intuitive understanding of the 



characteristics of this propagation constant. When   k is real and the 

waves are propagating. When  k becomes imaginary and the wave is 

evanescent. 

 

 
(25) 

 

The expression (25) thus defines band edges and bandwidth, in which wave propagation 

due to periodic condition is evanescent. Evanescent frequency bands defined by these 

boundaries are known as Forbidden Bands or Brillouin Zones.  

 

This phenomenon of frequency-dependent propagation loss properties of periodic 

mediums were well studied in the twentieth century with a focus on crystalline structures 

and Bragg diffraction. Léon Brillouin studied periodic wave propagation in greater details 

and introduced this concept which was referred to as Brillouin Zones in honor of this 

French physicist. Since then, several researchers have analyzed electromagnetic and 

generic wave propagation in detail. Recently, researchers have been studying periodic 

metal structures with a focus on antenna array applications and Electronic Band Gap 

(EBG) filter applications. However, there have been no theoretical studies done to 

understand the periodic structures encountered in digital signal transmission channels and 

their implications to the Signal Integrity of System Busses. 

 

Figure 4 is an example plot of dispersion relation (24) between normalized k (K) and 

normalized ω (2f) for  an arbitrary selected periodic transmission line structure with unit 

cell parameters of  and   A loss-

free, ideal transmission lines was assumed ( ) in this example for simplicity. 

The shaded regions of Figure 4 are the Brillouin Zones where the imaginary part of K is 

not zero. This selected example demonstrates several possible dispersion zones with non-

equal bandwidths and amplitudes in the frequency range of 0 to 100GHz. 

 

 

 

Figure 4. Dispersion Relation between K and ω of a periodic T-line model. 



Cascading Periodic Unit-Cells of a Finite Periodic Structure 

 

In the previous section, we established the solution for dispersion band edges for an 

infinitely long medium. However, real world problems are bound to a finite length 

structure. Exact solutions for the magnitude of losses within the dispersion zone can be 

derived by cascading the N number of identical ABCD matrices. Cascading ABCD 

matrices can be achieved by linear multiplication to yield N
th 

power of the single ABCD 

parameter. 
 
 

 

Since  is a reciprocal matrix, the N
th

 power of it can be simplified using the 

Chebyshev Identity [6] defined by equations (26),(27), and (28). This identity can be 

verified using the method  of induction[8] 

 (26) 

where  

 (27) 

and 

 (28) 

With the above results, transfer matrix connecting voltages and currents at both ports of 

the transmission line can be written as in Equation (29) 

 (29) 

Equation (29) completes the solution to periodic loading in a finite transmission line with 

an ABCD parameter, which is a complete analytical solution to dispersion zones due to 

periodic loading in terms of periodic geometric and electrical parameters.  

 

 

Scattering Parameters  

 

S-parameters (scattering parameters) are often preferred when characterizing 

transmission mediums. They more accurately characterize measured networks by relating 

the reflected power as a fraction of delivered power[10]. S-parameters of a finite medium 

in the previous section can be directly obtained by converting the ABCD matrix in 

Equation (29) into S-parameters with reference to the characteristic impedance of Z0. A 

two-port periodic S-parameter of finite length with a reciprocal structure that has N 



periods can be expressed as shown in Equations (30) and (31). Note that these quantities 

represent loss of the structure due to periodic the loading only. 

 

 (30) 

 
(31) 

 

Insertion loss (S21) is a measure of the square root of the ratio of power transmitted 

P(x=l) through a port at a distance L to the power injected P(x=0) at the reference port. 

 (32) 

where αdB is the attenuation coefficient. αdB represents a combination of losses caused by 

various factors such as dielectric loss, impurities in materials, surface roughness of the 

conductors, and periodic loss. We can separate these loss contributions, as in Equation 

(33) and use it as a metric to evaluate periodic losses as a function of frequency, ω. 

Equation (32) derived in the previous section can be used to evaluate the periodic 

contribution by .   

 (33) 

 

From equation (31) it is evident that the insertion losses within stop band regimes are not 

linearly scaling with number of periods N. Generally, insertation loss is assumed linearly 

scalable with the length for signal integrity modeling practices due to limited simulation 

and measurements resources. However, this assumption is only valid outside the stop 

bands. Loss inside stop bands can be analytically characterized for a given length of the 

structure according to Equation (31). 

 

 

Simulation Verification 

 

A simple SPICE simulation was performed as an example to verify the theory outlined 

above. In this example, the unit cell structure (  and 

  ) assumed in Figure 4 was modeled using ANSYS® Designer®. 

Single ended S-parameter simulations were performed up to 100GHz on a structure with 

twelve (N=12) cascaded unit-cells. Results of the simulations are plotted in Figure 5 as 

insertion and return loss parameters. We can clearly see the deep resonances within the 

stop bands theoretically identified in Figure 4.  



 

Figure 5. Return and Insertion loss profiles of 12-cell Periodic line: Spice Simulation 

 

Figure 6 shows the insertion loss profile of the same twelve-cell periodic structure 

computed using a Matlab® code to compute S21 using Equation (31) for frequencies up to 

100GHz. Insertion loss profiles of Figure 5 and Figure 6 shows a match in terms of 

Brillion zone bandwidths and peak amplitudes. Thus, the presented theory is verified with 

SPICE simulations. It also important to note the side lobes around main resonances are 

also matched. An analytical formula gives an exact solution for these side-lobes, which 

are hard to measure using lab equipment. 

 

Figure 6. Insertion loss profile of 12-cell periodic line: Analytical Computation  



 

Fiber Weave Modeling 

 

The theory outlined in the previous section can be ubiquitously applied to any periodic 

structure, which can be approximated to a unit cell with two distinct transmission line 

models. Some examples of applications include fiber weave structures and  routing 

through a BGA pin-field. In this section, we will discuss the use of a 3D full wave FEM 

EM field solver to model and analyze the fiber weave resonances. We will also apply the 

periodic transmission line theory to selected fiber weave geometries, and correlate to 3D 

EM simulations and measurements. All 3D EM simulations were performed using 

ANSYS® HFSS® version 14. 

 

3D EM Field Solver Simulations and Measurements 

In order to correlate our theoretical predictions to real world observations, we have 

created prepreg models with fiber weaves as elliptical cross-sectional bundles. Wefts and 

wraps were modeled as sinusoidal weaves by sweeping appropriate elliptical cross-

section planes along a sinusoidal curve [7]. A 3D model of a microstrip trace on a 2116 

type fiber weave is shown as an example in Figure 7. 

 

 

 
Figure 7 . Accurate Fiber Weave Model of type 2116 

 

Stripline models were created to match our test board stackup parameters. Our test board 

routings were rotated by 10 degrees with respect to the fiber weave geometry. As an 

experiment we simulated both orthogonal and 10 degree rotated models to drive S-

parameters. As presented in [4] and [3] resonances on orthogonal routings due to Single 

Cell Periodicity (SCP) were observed well above 110 GHz only but resonances due to 

Multi Cell Periodicity (MCP) were observed in the neighborhood of 20GHz to 40GHz 

depending on weave type. Since only MCP is the cause for the resonances in the 

frequency ranges of interest, we will limit the discussion to MCP for a 10 degree rotation. 



 

Figure 8 illustrates two possible routing schemes of a microstrip, which was instructed to 

be routed as a 10-degree rotated routing on a 1080 prepreg. Depending on how the boards 

are fabricated it is possible to have two distinct MCP geometries as in Figure 8(a) (which 

is a rotated at 10
0
) and Figure 8(b) (which is a rotated at 80

0
) 

 

 
Figure 8. Unit cell definition of rotated micro strip on layer 6 of test board. Weave 

type is 1080. (a) 10
0
 rotation, (b) 80

0
 rotation 

 

Figure 9 validates our simulation model with an overlay plot from a 50GHz VNA 

measurement and simulated insertion-loss profile of an inch long single ended Microstrip 

line on a 1080 weave of an ISOLA RTC test board. As in this figure, 10
0
 rotated 

configurations gave the best match to the measurement. This weave orientation was also 

confirmed from PCB cross-section image measurements.  

 

 
Figure 9. Comparing Simulated S12 of a 1-inch line with two possible rotations.  

 

 

Characterizing Periodic a Unit cell of a Fiber Weave Model 

 

Solving accurate 3D models presented in the previous section is not very practical for real 

world transmissions due to intensive computing resource requirements. At the time of 

this writing, solving fiber weave models with traces longer than three inches needed 

multiple HPC nodes in order to complete the simulation within a reasonable time. 

However, just a single unit-cell can be conveniently solved in relatively no time. So we 

employed a hybrid approach to characterize a single unit cell using 3D EM Simulation 



and then apply the periodic transmission line theory to scale it to any given length.  This 

hybrid modeling approach enables us to develop terminal s-parameter models for 

periodically loaded stripline and microstrip lines by performing 3D or 2D simulation on 

ports of a unit cell only. 

 

 To demonstrate this approach, a strip line trace sandwiched between a symmetric 106-

type prepreg was selected as an example. As illustrated in Figure 10, fundamental 

periodic patterns were identified. A technique to identify an approximate dominant period 

was proposed by [4]. Once we find an approximate period, we can graphically measure 

corresponding “weft period” and “warp period” were dimensions as presented in [3, 8] 

for advanced theoretical calculations. 

 

 

Figure 10. Dominant Periods (MCP) of 10
0
 rotated trace on Type-106 weave. 

 

Periodic unit-cells were modeled as two short transmission lines in HFSS as in Figure 10. 

These two models were solved and R, L, G, and C parameters were computed for each 

model. The insertion loss for a complete one-inch long transmission line was analytically 

computed using equation (31). For comparison purposes the complete structure was also 

solved using a 3D EM simulation tool. 

 

Figure 11is an overlay plot of theoretical calculations and complete 3D EM simulation 

results of insertion loss for a one-inch single-ended line. In this plot we also included a 

uniform model (green plot) to capture loss due to all other factors except periodic 

loading.  Then we added the calculated periodic loss profile to the uniform S21 to get the 

compound S21profile (blue plot).  As seen from the plot, both theory and simulation (red 

plot) are matching well at first and second resonances. Using a similar approach, higher 

frequency resonances can also be superimposed by considering other shorter periods.  

 

In this example we demonstrated that non-periodic transmission line models can be 

analytically corrected to include periodic effects with adequate accuracy. 

 



 
Figure 11. Simulated and calculated resonances on a 10

O
-rotated trace on 106 

weave. 

 

Application to Electromagnetic Field Solvers 

 

Applying the Floquet-Bloch theory and principles to generalized 3D EM field solvers 

requires that the user will be able to discretize transmission lines into periodic sections. 

This includes both the fiber weave and the copper trace segments. Figure 12 shows a 

DDR3 trace routing that is typical for memory DIMM modules. The DDR3 net starts on 

the bottom and has multiple layer transitions within the PCB. 

 

Due to the non-periodic routing of traces which is common within the industry the 

author’s opinion is the application to 3D EM field solvers would be limited due to the 

cumbersome overhead of defining individual periodic unit cells. In addition the accuracy 

for a 3D field solver would be degraded as mutual couplings that were not periodic in 

nature would be disregarded using this approach. 

 

Applying the Floquet-Bloch theorem to a full-wave hybrid field solver where the trace 

segments are decomposed from the plane geometries and via transitions could yield 

positive results for both speed and accuracy.  Hybrid solvers utilize a highly efficient 

modeling technique which analyzes complete power distribution systems along with 

signal nets for the characterization of entire electronic packages and boards [11]. This 

includes multilayered power/ground planes containing multiple vias and multi-conductor 

signal traces. The total electromagnetic fields inside the multilayered structures (packages 

and boards) are decomposed into parallel-plate and transmission-line modes. Within each 

parallel plate waveguide region that is formed by a pair of power and ground planes a two 

dimensional wave equation is formulated and solved using the finite element method. For 

high speed digital designs only the fundamental, TEM, mode needs to be considered in 



these parallel plate waveguide regions. This is due to the high cut-off frequency 

associated with the higher order modes. Using these restrictions a modified form of 

Maxwell's equation needs to be solved. 

 

 (34) 

 

 
 

The scalar unknown, , represents the voltage drop between the planes, and L, C, R, G 

are respectively the inductance, capacitance, resistance, and conductance per unit area. 

The symbol  in (34) represents a two-dimensional gradient/divergence operator.  

Equation (34) is efficiently solved using a two dimensional finite element algorithm. In 

addition to the power and ground planes, packages and boards have many signal traces 

passing between these planes. When a trace is present, the assumption that the electric 

field is orthogonal to the power and ground planes becomes invalid. Hence, a modal 

decomposition method is employed to decouple the transmission line TEM mode from 

the parallel plate mode. The traces between the planes and the microstrip line mode for 

traces on top/bottom of the package are modeled as admittance (Y) networks by using 

multi-conductor transmission line theory based on solving the Telegrapher's 

equation(35):  

 

 (35) 

 

 

Here  is the modal voltage on the trace (a function of the distance parameter z) and R, 

L, G, and C are the trace parameters per unit length. Other discontinuities in the ground 

and power planes, such as through-hole signal vias, can be represented by equivalent 

circuits. The transmission line and via circuit parameters are determined by either 

analytical formulas or fast quasi-static field solvers. The circuit models for the traces and 

vias can then be combined with the two-dimensional finite element model of the planes to 

yield a matrix describing the entire system. With this hybrid methodology, large boards 

and packages can be solved accurately in a reasonable length of time, even when other 

three dimensional solver methods become intractable.  

 

Using this type of approach the preprocessor could determine the periodic structures and 

solve each 2D trace segment as a Floquet-Bloch periodic unit cell thereby applying the 

fiber weave effect into the entire PCB or PKG extraction. This results of this approach 

and findings are left for future work.  



 
Figure 12: Typical DDR3 trace routing within a PCB. Top picture shows via 

transitions and trace segments only. Bottom picture shows non-ideal power and 

ground along with the DDR3 net. 

 

VNA Measurement and Analytical prediction 

 

Figure 12 shows an overlay plot of measured and theoretical insertion-loss profiles for a 

5-inch long Microstrip line on a 1080weave of an ISOLA RTC test board. As in previous 

example only Unit cell models were created in HFSS. Stackup material and trace 

geometry were closely matched to our test boards on which the measurement was taken. 

R, L, G, and C parameters were extracted at both ports on the unit cell and periodic 



resonances were computed using a software tool developed with Matlab®, scripts and 

GUIDE® graphical user interface. Overall measured and theoretical insertion-loss plots 

given in Figure 13 show a good match. Peak resonance frequency is closely matching, 

but the theoretical formula predicted slightly more loss, which is possibly due to 

unaccounted losses in the measurement system and irregularities in real fiber bundles. 

 

 
Figure 13. Measured S21 of 10

O 
rotated, 5” long Microstrip on layer 6 of test board 

and computed S21. 

 

High Frequency VNA Measurements 

 

Our 3D EM simulations of realistic fiber weave models and analytical computation 

technique presented in previous sections predicted correlating periodic resonances. On 

these 10-degree rotated trace models, we observed the first resonance to be relatively 

larger (in the neighborhood of 20GHz to 4GHz) and subsequent resonances in higher 

frequencies to be relatively smaller. Second and higher frequency resonances occurs at 

very high frequencies (above 50GHz), which are out of the range of the capabilities of 

most PCB characterization lab instruments.  

 

In order to experimentally verify the predictions discussed above, S-Parameters 

corresponding to stripline and microstrip test boards fabricated on ISOLA substrates were 

measured up to 110GHz. S-Parameter measurements of the single ended traces were 

taken with the state-of-the-art Agilent Performance Network Analyzer (PNA) setup at 

Intel Labs. This setup extends the frequency sweep capability of the 67GHz Agilent 4-

port E8361A/ N4421B PNA to 110 GHz by combining a N5260A millimeter head 

controller and a pair of millimeter Frequency Extender heads. This measurement setup is 



capable of performing 2-port measurements with single frequency range sweep from 

10MHz to 110GHz.   

 

A pair of W-Band (110GHz) RF probes was used on both ends of the traces (DUT). 

These ACP110-A series Air-Coplanar Probes (ACP) were made by Cascade Microtech® 

to match the 250um pitch ground-signal-ground (GSG) contact points on our test boards. 

ACP probes use a short 1.0mm air dielectric cable to connect to test ports of waveguide 

modules. A two-port Line-Reflect-Reflect-Match (LRRM) calibration was performed 

using Thru, Reflect and Load structures of the precision calibration substrate. A 

microscopic view of a 110GHz ACP Probe near a 10-degree rotated, non-soldermasked 

microstrip launch with visible 1080 fiber weaves is shown in Figure 14. 

 

 
Figure 14. Microscopic Top View of Visible Layer 6 Weaves and 110GHz ACP Probe. 

 

Figure 15 shows an example of an S-Parameter measurement taken on a 3-inch long 

Microstrip line on ISOLA RTC test board. This measurement confirmed a larger loss 

around 37GHz. We also confirmed smaller second stop band around 63GHz and a third 

resonance near 72GHz. These observations are in agreement with our 3D-EM simulations 

and analytical calculations. Due to excessive loss at higher frequencies, we were only 

able to get good measurements up to 110GHz on traces shorter than 3 inches. 



 
Figure 15. High-Frequency S-Parameter Measurements of a 3” ISOLA/1080 

Microstrip. 

 

 

Summary 

 

High-speed data signals often encounter periodic dielectric conditions along their 

propagation path. Periodic discontinuities such as fiber weaves can introduce additional 

loss mechanisms in certain high frequency bands. It is important to take this effects in to 

account in sub-millimeter wavelength interconnect designs. Modeling real world PCB 

trace lengths with complete fiber wave structures is not practical due to the need for 

intensive computing resources. VNA measurement based modeling is also not feasible 

because, making good measurements needs cost prohibitive equipment to cover a large 

frequency sweeps with higher dynamic ranges.    

 

In this paper, we have outlined the periodic transmission theory and introduced an 

analytical technique to compute these additional losses in terms of the channel’s periodic 

properties. We treated PCB fiber weave structures as a periodic medium for propagating 

waves and applied the analytical formulae to correct PCB trace S-Parameter models to 

account for  periodic loading in addition to all other loss contributions. This modeling 

technique can be effectively applied to create scalable transmission line models with 

periodic loading by characterizing just a single unit cell. Analytical approach proposed 

here can be ubiquitously applied to any periodic structure, which can be distinguished as 

a cascaded unit cell structure. This technique can also be extended to predict resonances 

on high speed serial differential trace pairs. Our analytical models are in good agreement 

with 3D EM simulations and VNA measurements up to 100GHz.  
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