## Deschencontionio

Electrodeposited Copper Foil Surface Characterization for Accurate Conductor Loss Modeling

## Michael Griesi (Speaker)

MS Student, University of South Carolina
Dr. Paul G. Huray
Professor of Electrical Engineering, University of South Carolina
Dr. Olufemi (Femi) Oluwafemi
Signal Integrity Lead, Intel Corporation
Stephen Hall
Principal Engineer, Intel Corporation
John Fatcheric
Chief Operating Officer, Oak-Mitsui

## Agenda

$>$ Conductor loss by empirical fit compared to first principles model
$>$ Identifying characterization parameters
$>$ Characterizing the electrodeposited (ED) copper foil surface
$>$ Applying parameters to simulation
$>$ Conclusion

#  

January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA

## Conductor Loss by Empirical Fit v First Principles Model



The conventional Hammerstad equation is an empirical fit to Morgan's 2D calculations which fails above a few GHz. Modified versions provide minor improvements.

The Huray first principles 3D physical model has demonstrated accurate $d B /$ in predictions up to 50 GHz by estimating

ED copper foil surface parameters.


For designs above a few GHz , the conventional 2D conductor loss empirical fit fails. The 3D Huray model is correct but needs improved parameters for characterizing ED copper.

# DEsICNEOW 

## What parameters should be obtained?

Typical ED copper foil used for PCB fabrication begins with a raw untreated copper surface.

Untreated Drum Side -

Untreated Matte Side


Copper "anchor nodules" are added to strengthen
PCB adhesion on a treated copper surface.


Treated Drum Side

Treated Matte Side


The Huray model describes the power loss associated with the untreated surface and anchor nodules.

$$
\frac{P_{\text {rough }}}{P_{\text {smooth }}} \approx \frac{\frac{\mu_{0} \omega \delta}{4}\left|H_{0}\right|^{2} A_{\text {matte }}+\sum_{i=1}^{j} N_{i} \sigma_{\text {total }, \frac{\eta}{2}}\left|H_{0}\right|^{2}}{\frac{\mu_{0} \omega \delta}{4}\left|H_{0}\right|^{2} A_{\text {flat }}}
$$

$$
\frac{P_{\text {rough }}}{P_{\text {smooth }}} \approx \frac{\text { Untreated Area }+ \text { Anchor Nodules }}{\text { Unit Area }(\text { Perfectly Flat })}
$$

# Desincownem 

## What parameters should be obtained?



Approximating the copper anchor nodules as spherical "snowballs" and substituting the dipole absorption cross section of a distribution of $j$ different sized snowballs yields:

$$
\frac{P_{\text {rough }}}{P_{\text {smooth }}} \approx \frac{A_{\text {matte }}}{A_{\text {flat }}}+6 \sum_{i=1}^{j}\left(\frac{N_{i} \pi a_{i}^{2}}{A_{\text {flat }}}\right) /\left(1+\frac{\delta}{a_{i}}+\frac{\delta^{2}}{2 a_{i}^{2}}\right)
$$

The parameters for electrodeposited copper foil surface characterization are thus:

1. The radius of the $i^{\text {th }}$ "snowball" (anchor nodule)
2. The number of snowballs with radius $a_{i}$ per unit flat area
3. The relative surface area without snowballs per unit flat area

$$
\begin{aligned}
& a_{i} \\
& N_{i} / A_{\text {flat }} \\
& A_{\text {matte }} / A_{\text {flat }}
\end{aligned}
$$

# Desincontint 

## What parameters should be obtained?

Previous snowball model estimations assumed the untreated surface was perfectly flat and all the snowballs were of uniform average size.


Does a distribution of different size snowballs on a non-flat surface have an impact on losses?

Absorption and scattering cross-sections of various size copper spheres as a function of frequency.


# Desincontinit 

## Does a snowball size distribution matter or can sizes be averaged for characterization?



A normal distribution with the same number of snowballs and same average radius of $0.5 \mu \mathrm{~m}$ can lead to higher loss A wider distribution with the same number of snowballs and same average radius of $0.5 \mu \mathrm{~m}$ can lead to higher loss
The $A_{\text {matte }} / A_{\text {flat }}$ parameter increases losses at all frequencies
The Hammerstad empirical fit saturates at an arbitrary maximum of 2.0

Yes, a distribution of snowball sizes can impact losses and should not be averaged for characterization. All model parameters $a_{i}, N_{i} / A_{\text {flat }}, \& A_{\text {matte }} / A_{\text {flat }}$ should be obtained for the most accurate results.

## $N_{i} / A_{\text {flat }}$ and $a_{i}$ Distribution: SEM Analysis Method



# Desientory 

## $N_{i} / A_{\text {flat }}$ and $a_{i}$ Distribution: SEM Analysis Method

$>1^{\text {st }}$ challenge: Identify the snowballs


Use a Circular Hough Transform (CHT) to find and circle the snowballs.


A CHT uses image intensity to search for 'dark' or 'bright' circles after edge detection. This is not binarization.
**Once the first CHT parameters are set, they can be used for subsequent analyses.


## $N_{i} / A_{\text {flat }}$ and $a_{i}$ Distribution: SEM Analysis Method

$>2^{\text {nd }}$ and $3^{\text {rd }}$ challenge: Count the number of snowballs and measure their radii


Once the snowballs (or circles) are found using a Circular Hough Transform (CHT), they can be counted and measured.
**This is easy to extract as they are defined by the CHT.

January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA

## $N_{i} / A_{f l a t}$ and $a_{i}$ Distribution: 3D Microscope Method



Hirox KH-8700E
3D Digital Microscope

Images taken with
2800x Magnification
$>$ Images were taken at 2800x

- Excessive vibration made it difficult to increase
> Image processing software built-in
- Supports external image processing
$>$ Built-in particle counting software
- Choose between binarization or

Red-Green-Blue (RGB) algorithm
> Same 3 Challenges as before:

- $1^{\text {st }}$ : Identify the snowballs
- $2^{\text {nd }}$ : Count the snowballs
- $3^{\text {rd }}$ : Measure the snowball radii


## $N_{i} / A_{f l a t}$ and $a_{i}$ Distribution: 3D Microscope Method

$>1^{\text {st }}$ challenge: Identify the snowballs

$>$ Built-in binarization particle counter used to identify snowballs
$>$ Requires manual threshold adjustments for every image (very subjective)
$>$ Some statistics are provided immediately that can help standardize thresholding, such as a ratio of the selected area to the total area
$>$ Note missed or clumped snowballs

# Desincontinit 

January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA

## $N_{i} / A_{\text {flat }}$ and $a_{i}$ Distribution: 3D Microscope Method

$>2^{\text {nd }}$ and $3^{\text {rd }}$ challenge: Count the number of snowballs and measure their radii

$>$ Distribution binning cannot be performed with the microscope's software
> Data can be exported as a comma separated values (csv) file for external analysis and binning
$>$ A csv provides an opportunity to filter unrealistic snowball sizes
$>$ But, there's no inherent justification to choose which sizes are unrealistic

- SEM images used to justify filtering $0.3 \mu \mathrm{~m}<a_{i}<2.0 \mu \mathrm{~m}$
(5 Samples from 1 Drum)



#  

January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA

## $N_{i} / A_{\text {flat }}$ and $a_{i}$ Distribution: Results

(5 Samples from 1 Drum)

| Drum Side <br> SEM Method (Oak-Mitsui ED Foil) |  | Matte Side <br> SEM Method (Oak-Mitsui ED Foil) |  |
| :---: | :---: | :---: | :---: |
| Average Snowball Radius [a] | $0.54 \mu \mathrm{~m}$ | Average Snowball Radius [a] | $0.56 \mu \mathrm{~m}$ |
| Averaged Number Snowballs [ $N / 88.36 \mu \mathrm{~m}^{2}$ ] | 40 | Averaged Number Snowballs [ $N / 88.36 \mu \mathrm{~m}^{2}$ ] | 38 |
| Microscope Method (Oak-Mitsui ED Foil) |  | Microscope Method (Oak-Mitsui ED Foil) |  |
| Average Snowball Radius [a] | $0.59 \mu \mathrm{~m}$ | Average Snowball Radius [a] | $0.7 \mu \mathrm{~m}$ |
| Averaged Number Snowballs [ $N / 88.36 \mu \mathrm{~m}^{2}$ ] | 10 | Averaged Number Snowballs [ $N / 88.36 \mu \mathrm{~m}^{2}$ ] | 9 |
| Previous Estimates (Gould ED Foil) |  | Previous Estimates (Gould ED Foil) |  |
| Effective Snowball Radius [a] | $0.5 \mu \mathrm{~m}$ | Effective Snowball Radius [a] | $1.0 \mu \mathrm{~m}$ |
| Effective Number Snowballs [ $N / 88.36 \mu \mathrm{~m}^{2}$ ] | 50 | Effective Number Snowballs [ $N / 88.36 \mu \mathrm{~m}^{2}$ ] | 79 |

# Descuncow fuit 

January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA

## $N_{i} / A_{\text {flat }}$ and $a_{i}$ Distribution: Results

| Drum Side | Matte Side |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SEM Method (Oak-Mitsui ED Foil) | SEM Method (Oak-Mitsui ED Foil) |  |  |  |
| Area difference compared to Gould estimate | $-6.7 \%$ | Area difference compared to Gould estimate |  | $-83.8 \%$ |
| Microscope Method (Oak-Mitsui ED Foil) | Microscope Method (Oak-Mitsui ED Foil) |  |  |  |
| Area difference compared to Gould estimate | $-72.2 \%$ | Area difference compared to Gould estimate | $-94.4 \%$ |  |

Microscope method was convenient but struggled to isolate snowballs. May improve with anti-vibe table and CHT algorithm.

A possible correction to the matte side SEM method could be to account for the different snowball density per unit area:


Drum Side


Matte Side

## Matte Side

SEM Method with correction (Oak-Mitsui ED Foil)

| Average Snowball Radius $[a]$ | $0.56 \mu \mathrm{~m}$ |
| :---: | :---: |
| Averaged Number Snowballs $\left[N / 88.36 \mu \mathrm{~m}^{2}\right]$ | 234 |
| Area difference compared to Gould estimate | $-7.1 \%$ |

## $A_{\text {matte }} / A_{\text {flat }}:$ Perthometer Method



Mahr M2


Digital Controller
$>2$ Measurements must be made per untreated sample
$\cdot 1$ in X direction (width) \& 1 in Y direction (length)
$>$ Data points are only provided for $R_{a}, R_{q}, R_{z}, R_{\max }$, etc.

- But, analog profile can be printed

$>1^{\text {st }}$ challenge: Convert printed graph to digital data
$>2^{\text {nd }}$ challenge: Properly interpolate curve between points
$>3^{\text {rd }}$ challenge: Measure total length and calculate area


## Desten Coy

## $A_{\text {matte }} / A_{\text {flat }}:$ Perthometer Method

$>1^{\text {st }}$ challenge: Image was scanned then Python was used to convert the pixels to linear units


Original Printout with Continuous Graph


Recreated with Discrete Data Points
*Data Points at Original Minima


# Descincontam 

## $A_{\text {matte }} / A_{\text {flat }}$ : Perthometer Method

$>2^{\text {nd }}$ challenge: Establish a minimum and maximum interpolation, then consider alternatives
 Linear Interpolation - (Minimum)




Hybrid Interpolation > (Sin | Linear)

Periodic Interpolation (Nonlinear Average) $\rightarrow$


## Desien Gow rane

January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA

## $A_{\text {matte }} / A_{\text {flat }}:$ Perthometer Method

$3^{\text {rd }}$ challenge: Sum interpolated arc lengths and calculate area from XY lengths
Linear (Absolute Minimum): Pythagorean Theorem
Length $=\sqrt{(\text { Flat Length })^{2}+(\text { Height })^{2}}$


Z-Axis
(Height) Deviation

Sin (Effective Maximum): Arc Length by Composite Simpson's Rule
Length $=\int_{0}^{\pi / 2} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \approx \frac{\Delta x}{3}\left[f\left(x_{0}\right)+2 \sum_{j=1}^{n / 2-1} f\left(x_{2 j}\right)+4 \sum_{j=1}^{n / 2} f\left(x_{2 j-1}\right)+f\left(x_{n}\right)\right]$
Where $\frac{d y}{d x}(\sin (x))=\cos (x) \rightarrow f\left(x_{n}\right)=\sqrt{1+\cos ^{2}\left(x_{n}\right)}$
Hybrid (Intermediate): If $\Delta x=0 \rightarrow$ Linear Interpolation $\quad$ Else $\rightarrow$ Sin Interpolation
Periodic: Binarize \& average peaks \& valleys from $R_{a} \rightarrow$ Arc Length by Simpson's Rule
Where $\frac{d y}{d x}\left(a x^{2}\right)=2 a x \rightarrow f\left(x_{n}\right)=\sqrt{1+4 a^{2} x^{2}}$ And $a=\left[\frac{4 R_{a}}{l_{\text {flat }}^{2}}\right]$

#  

## $A_{\text {matte }} / A_{\text {flat }}:$ 3D Microscope Method



Hirox KH-8700E
3D Digital Microscope

Series of images taken at different focal points

- Focal range and number of steps set by user
- Again, vibrations reduced resolution
$>$ Image processing software built-in
- Supports external image processing

3D image provides $A_{\text {matte }}$ and $A_{\text {flat }}$ measurements

- Accuracy and interpolation is undetermined

Measurement is simple

1. Record image 2. Select area 3. Click surface


Drum Side


Matte Side

# DesinuGownit 

January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA

## $A_{\text {matte }} / A_{\text {flat }}$ : Results

## Drum Side

Perthometer Method (10 Samples from 2 Drums)

|  | Linear | $\operatorname{Sin}$ | Hybrid | Periodic |
| :---: | :---: | :---: | :---: | :---: |
| Average | 1.0224 | 1.0758 | 1.0549 | 1.0222 |
| $\sigma_{S}$ | 0.003 | 0.003 | 0.003 | 0.006 |

Microscope Method (5 Samples from 1 Drum)

| Average | 1.13 |
| :---: | :---: |
| $\sigma_{S}$ | 0.028 |

## Matte Side

Perthometer Method (10 Samples from 2 Drums)

|  | Linear | Sin | Hybrid | Periodic |
| :---: | :---: | :---: | :---: | :---: |
| Average | 1.1095 | 1.1674 | 1.1455 | 1.1165 |
| $\sigma_{S}$ | 0.006 | 0.007 | 0.007 | 0.028 |

Microscope Method (5 Samples from 1 Drum)

| Average | 1.17 |
| :---: | :---: |
| $\sigma_{S}$ | 0.022 |

## Using the snowball model in Ansys ${ }^{\circledR}$ HFSS $^{\text {TM }}$

$>$ HFSS can define a finite conductivity boundary for selected conductors.
$>$ Causal boundary function using a "single snowball form":
$\frac{P_{\text {rough }}}{P_{\text {smooth }}} \approx 1+\left(\frac{3}{2}\right)(S R)\left(\frac{1}{1+\frac{\delta(f)}{a}+\frac{1}{2}\left(\frac{\delta(f)}{a}\right)^{2}}\right) \quad$ where $\quad S R=\frac{N_{i} 4 \pi a_{i}^{2}}{A_{\text {flat }}}$

| Surface Roughness Model: | C Groisse |  |  |
| :--- | :--- | :--- | :--- |
| Nodule Radius: | 0.5 |  |  |
| Hall-Huray Surface Ratio: | 2.9 |  |  |



But...
It was concluded a uniform snowball radius could lead to errors.

# Desincownatime 

## Using the snowball model in Ansys ${ }^{\circledR}$ HFSS ${ }^{\text {TM }}$

The error from using a single uniform radius can be reduced by determining an Effective Radius.

"Absolute Average" $=$ Average $a_{i}$ of ALL $N_{i}$ snowballs "Bin Average" = Average of the distribution bins

1. Characterize $a_{i}, N_{i} / A_{\text {flat }}$, and $A_{\text {matte }} / A_{\text {flat }}$
2. Calculate and plot $\frac{P_{\text {rough }}}{P_{\text {smooth }}}$ properly with a complete snowball distribution
3. Calculate and plot again using the same snowball packing density $\frac{N_{\text {total }}}{A_{\text {flat }}}$ but $\frac{A_{\text {matte }}}{A_{\text {flat }}}=1$
4. Tune $\boldsymbol{a}_{\text {effective }}$ to best fit the complete distribution
5. Calculate $S R$ based on $a_{\text {effective }}$

This is not the same as an average radius.

# Descencow ritit 

January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA

## Using the snowball model in Ansys ${ }^{\circledR}$ HFSS ${ }^{\text {TM }}$

Actual 5" Microstrip


Modeled 5" Microstrip

FR-4

## Reference Plane

| Trace Width (top) | 2.4579 mils |
| :---: | :---: |
| Trace Width (bottom) | 3.6256 mils |
| Trace Thickness | 2.5746 mils |
| Substrate Thickness | 2.8957 mils |
| Ground Thickness | 1.3907 mils |

Gould Foil Distribution

$>$ Gould ED Foil was used in test board
> Gould not available for full characterization
$>1$ image analyzed by SEM method at $10,000 x$
$A_{\text {matte }} / A_{\text {flat }}$ assumed same as Oak-Mitsui
$a_{\text {effective }}=0.63 \mu \mathrm{~m} \& S R=1.77$

Model dimensions obtained from previous measurements
> Substrate parameters obtained from manufacturer specifications

# Desincon zit 

## Conclusion

$>$ The Huray surface roughness model has demonstrated accurate $d B /$ in conductor loss predictions up to 50 GHz using the snowball approximation and parameter estimations but needed a more accurate method of characterizing the surface of electrodeposited (ED) foil to obtain model parameters.

- RMS deviation has no influence in a first principles theory.
$>$ It was observed that a distribution of snowball sizes can impact conductor losses and should not be averaged for characterization; therefore each parameter of the snowball approximation $a_{i}, N_{i} / A_{\text {flat }}$, and $A_{\text {matte }} / A_{\text {flat }}$ should be characterized completely for the most accurate results.
$>$ A few methods of more accurately characterizing an ED foil surface to obtain $a_{i}, N_{i} / A_{f l a t}$, and $A_{\text {matte }} / A_{\text {flat }}$ were demonstrated using a profilometer, an SEM, and/or a 3D digital microscope.
$>$ A method of determining $a_{\text {effective }}$ for simulation was demonstrated and implemented in an Ansys ${ }^{\circledR}{ }^{\circledR}$ HFSS ${ }^{\text {TM }}$ model of a SE $5 "$ microstrip with treated drum side ED copper foil that correlated well with VNA measurements up to 50 GHz using the Huray model with characterized parameters.


# Desincon mation <br> <br> January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA <br> <br> January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA <br> <br> References 

 <br> <br> References}
[1] O. Oluwafemi, "Surface Roughness and its Impact on System Power Losses," Ph.D. dissertation, Dept. of Elec. Eng., Univ. of South Carolina, Columbia, SC 2007
[2] B. Curran, "Loss Modeling in Non-Ideal Transmission Lines for Optimal Signal Integrity," Ph.D. dissertation, Dept. of Elec. Eng., Tech. Univ. of Berlin, Berlin, Germany 2012, pp. 15-17
[3] P. G. Huray et al., "Impact of Copper Surface Texture on Loss: A Model that Works," DesignCon 2010, vol. 1, 2010, pp. 462-483
[4] P. G. Huray, The Foundations of Signal Integrity. Hoboken, NJ: John Wiley \& Sons, Inc., 2010, pp. 216-276
[5] E. Bogatin et al., "Which one is better? Comparing Options to Describe Frequency Dependent Losses," DesignCon 2013, vol. 1, 2013, pp. 469-494
[6] H. Kuba et al., "Automatic Particle Detection and Counting By One-Class SVM From Microscope Image," Proc. Int. Conf. on Neural Information Processing, Lecture Notes in Computer Science, vol.5507, 2009, pp. 361-368
[7] M. Block and R. Rojas, "Local Contrast Segmentation to Binarize Images," in Proc. of the 3rd International Conference on Digital Society (ICDS 2009), vol.1, no.1, Cancun, Mexico, 2009, pp.294-299
[8] C. Labno, "Two Ways to Count Cells with ImageJ," [Online]. Available: http://digital.bsd.uchicago.edu/resources_files/cell\ counting\ automated\ and\ manual.pdf
[9] T. Atherton and D. Kerbyson, "Size invariant circle detection," Image and Vision Computing. Vol. 17, no. 11, 1999, pp. 795-803
[10] J. Bracken, "A Causal Huray Model for Surface Roughness," DesignCon 2012, vol. 4, 2012, pp. 2880-2914
[11] Ansys, Inc., "HFSS™ Online Help," pp. 19.104-19.109. [Online]. Available:
https://support.ansys.com/portal/site/AnsysCustomerPortal/template.fss?file=/prod_docu/15.0/ebu/hfss_onlinehelp.pdf
[12] C. Jones, "Measurement and analysis of high frequency resonances in printed circuit boards," MS dissertation, Dept. of Elec. Eng., Univ. of South Carolina, Columbia, SC 2010
[13] Isola, "IS620 Typical Laminate Properties." [Online]. Available: http://advantage-dev.com/services/docs/Isola\ IS620rev2.pdf
[14] A. Horn et al., "Effect of conductor profile on the insertion loss, phase constant, and dispersion in thin high frequency transmission lines," DesignCon 2010, vol. 1, 2010, pp. 440-461

## Backup

$>$ Simulation results for $5 "$ microstrip (drum side treated) ED copper foil
$>$ Can the snowball approximation ignore scattered power?
$>$ Periodic interpolation binarize process

#  

## Using the snowball model in Ansys ${ }^{\circledR}$ HFSS ${ }^{\text {TM }}$ : Results

$>$ Using the Gould characterized distribution with parameters from last slide
$>$ Using a flat substrate model



Using built-in Groisse Equation
$>$ Using measured $R_{R M S}=1.2 \mu \mathrm{~m}$

Using a flat substrate model

Groisse equation (a modified Hammerstad equation) accurately predicted up to about 12 GHz .
The Huray model demonstrated a strong correlation up to 50 GHz .

## Desientow mint

January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA

## Can the snowball approximation ignore scattered power?

When a propagating signal encounters a good conducting sphere, like copper, the dipole signal can either be
scattered (outgoing power):
or
absorbed (incoming power):

$$
\sigma_{\text {scattered }}(\omega) \approx \frac{10 \pi}{3} k_{2}^{4} a_{1}^{6}\left[1+\frac{2}{5}\left(\frac{\delta}{a_{i}}\right)\right]
$$

$$
\sigma_{a b s o r b e d}(\omega) \approx 3 \pi k_{2} a_{1}^{2} \delta /\left[1+\frac{\delta}{a_{i}}+\frac{\delta^{2}}{2 a_{i}^{2}}\right]
$$

The snowball approximation estimates the $\sigma_{\text {total }, i}$ of the Huray model using only the dipole $\sigma_{\text {absorbed }}$ for a good conducting sphere:

$$
\frac{P_{\text {rough }}}{P_{\text {smooth }}} \approx \frac{\frac{\mu_{0} \omega \delta}{4}\left|H_{0}\right|^{2} A_{\text {matte }}+\sum_{i=1}^{j} N_{i} \sigma_{\text {total }, \frac{\eta}{2}}\left|H_{0}\right|^{2}}{\frac{\mu_{0} \omega \delta}{4}\left|H_{0}\right|^{2} A_{\text {flat }}} \quad \Longrightarrow \quad \frac{P_{\text {rough }}}{P_{\text {smooth }}} \approx \frac{A_{\text {matte }}}{A_{\text {flat }}}+6 \sum_{i=1}^{j}\left(\frac{N_{i} \pi a_{i}^{2}}{A_{\text {flat }}}\right) /\left(1+\frac{\delta}{a_{i}}+\frac{\delta^{2}}{2 a_{i}^{2}}\right)
$$

The 3 following slides conclude: Yes, scattered power can be ignored for frequencies under $100 \mathbf{G H z}$.

# Desincontinit 

## Can the snowball approximation ignore scattered power?

Absorption and scattering crosssections of various size copper spheres as a function of frequency.

Comparing the effective absorption and scattering cross section to the geometric area, power is primarily absorbed for frequencies $<\mathbf{1 0 0} \mathbf{~ G H z}$.

So... Yes, scattering effects are insignificant below 100 GHz

#  

## Can the snowball approximation ignore scattered power?



As a signal propagates across many snowballs, the effective area increases and power continues to be absorbed with almost no power being scattered.

At frequencies $<\mathbf{1 0 0} \mathbf{~ G H z}$, snowballs are more like small Pac-Mans eating (absorbing) power rather than big boulders scattering it.


Note: This growing snowball illustration is only a qualitative visual aid. It does not represent the

# Desincon zit 

January 27-30, 2015 I Santa Clara Convention Center I Santa CI
This cross-sectional image is to scale for 100 GHz ,
Can scattered power be ignored?


|  | Sc |
| ---: | :--- |
| X-Se |  |
| Copr |  |
| Abs |  |
| Scat |  |
| 券 |  |
| ind |  |

Football Field
Some perspective (@ 100 GHz):


## Copper Diameter:

## 530 px

Absorbed Power Diameter:

0.005 px

Scattered Power Diameter


At this scale, the scattered power cross section is too small to even exist on this slide.

Yes, scattering effects are insignificant below 100 GHz . OAK-MITSUI

January 27-30, 2015 I Santa Clara Convention Center I Santa Clara, CA

## Periodic Interpolation Binarization Process



Calculate the arc length of 1 average peak and 1 average trough: $L_{\text {total }}=N_{\text {peaks }} L_{\text {peak }}+N_{\text {troughs }} L_{\text {trough }}$

