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Agenda

» Conductor loss by empirical fit compared to first principles model
» ldentifying characterization parameters
» Characterizing the electrodeposited (ED) copper foil surface

» Applying parameters to simulation

» Conclusion
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Conductor Loss by Empirical Fit v First Principles Model

Inseetion Loss Inserion Loss
T T

The conventional Hammerstad equation is

1an empirical fit to Morgan’s 2D calculations = Huray Model.
Hammerstad . . .- Using an estimated
Empirical Fit {which fails above a few GHz. Modified 79 uniform spheres
‘versions provide minor improvements. N\ Wwith 0.5um radii
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of 7” Microstrip || model has demonstrated accurate dB/in with a high profile ||

with ahigh profile predictions up to 50 GHz by estimating "
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ED copper foil surface parameters. |,
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For designs above a few GHz, the conventional 2D conductor loss empirical fit fails.
The 3D Huray model is correct but needs improved parameters for characterizing ED copper.
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What parameters should be obtained?
Typical ED copper foil used for PCB fabrication | Copper “anchor nodules” are added to strengthen

begins with a raw untreated copper surface. PCB adhesmn on a treated copper surface.
BRI Untreated ' P Trcared
N Drum Side G Drum Side
Untreated Treated
Matte Side g Matte Side g==

The Huray model describes the power loss associated with the untreated surface and anchor nodules.
ﬂ0w5

Prough |Hol? Amatte + Zl 1 NiGtotal, 12|H0| Prough __ Untreated Area + Anchor Nodules

Psmooth ”°w6|H0|2Aﬂat Psmooth Unit Area (Perfectly Flat)
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What parameters should be obtained?
% Approximating the copper anchor nodules as spherical “snowballs” and

substituting the dipole absorption cross section of a distribution of j
different sized snowhballs yields:

Prough _ A i (Nimaf 5, 8
roug ~ matte + 6Z{=1( ina )/(1+_+_2>

Psmooth Aflat Afiat a; 2a;

l

The parameters for electrodeposited copper foil surface characterization are thus:

1. The radius of the i*" “snowball” (anchor nodule) a;
2.  The number of snowballs with radius a; per unit flat area Ni/Afia
3. The relative surface area without snowballs per unit flat area Apatte/ Afiat

| --MITSUI—@
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What parameters should be obtained?

Previous snowball model estimations assumed the
untreated surface was perfectly flat and all the
snowballs were of uniform average size.

Simplified snowball stack-up
used for previous estimations.

More realistic descriptio’n}

Does a distribution of different size snowballs on a
non-flat surface have an impact on losses?

Absorption and scattering cross-sections of various
size copper spheres as a function of frequency.
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Does a snowball size distribution matter or can sizes be averaged for characterization?

Snowball Radii Distribution Effect on Skin Loss for 100 Snowballs Wide Distribution > A normal distribution with the same
with a Single Average Radius Compared to Hammerstad W 50
£ 0 number of snowballs and same average
40 z 30 . .
§ 2% L radius of 0.5 um can lead to higher loss
3.5 -~ B 10

wideormal | 0 7T o > A wider distribution with the same

" . wn wy v}
Distribution 1 o~ ®

sowtatlredius | UMBeEr of snowballs and same average
radius of 0.5 um can lead to higher loss

3.0

== = Narrow Normal

25
Distribution

Narrow Distribution

2.0 e memm e e — ey o niform 0.5 um

Radius Flat Base 80 >

(P_rough / P_smooth)

15

The Apqtee/Afiar Parameter increases

60
, I losses at all frequencies
>

0 The Hammerstad empirical fit saturates

1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 0.25 050 0.75

Frequency (GH) sowballradius um) | gt an arbitrary maximum of 2.0

= = == Hammerstad

1.0

# of Snowballs

Yes, a distribution of snowball sizes can impact losses and should not be averaged for characterization.
All model parameters a;, N;/Afiqs, & Asaice/ Afia: Should be obtained for the most accurate results.
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N;/Af1q: and a; Distribution: SEM Analysis Method

.

2 g #2& > 1t challenge:
‘ 3 ldentify the snowballs

&> ond challenge:
' Count the snowballs

1> 3 challenge:
Measure the snowball radii

SEIl v 2.3 PCI Images taken with
Scanning Electron Microscope 3500x Magnification

AAY MITSUIJ
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N;/Af1q: and a; Distribution: SEM Analysis Method
» 1St challenge: Identify the snowballs

4 Use a Circular Hough Transform
# (CHT) to find and circle the snowballs.

—

A CHT uses image intensity to search
for ‘dark’ or ‘bright’ circles after edge
detection. This is not binarization.

**0Once the first CHT parameters are set,
they can be used for subsequent analyses.

OAK- MITSUIJ
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N;/Af1qa: and a; Distribution: SEM Analysis Method
> 2" and 3" challenge: Count the number of snowballs and measure their radii

Snowball Distribution for
Oak-Mitsui VLP Treated Drum
Side 0.50z MLS GlIl HTE 3500x%
-14092111A RTF 4in
T T T

180

Once the snowballs (or circles) are found using
a Circular Hough Transform (CHT), they can
be counted and measured.

g120*

**This is easy to extract as they
are defined by the CHT.

Number of Snowballs

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 13
Snowball Radius (a) in [um]
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N;/Ag1q: and a; Distribution: 3D Microscope Method

WA TN T e PR L T
e 3¢ .....ngzrjf,;-’ SRR > Images were taken at 2800x
o SRR T R LA el P * Excessive vibration made it difficult to increase
gh ) { . ’J‘ '

st B0 ;.\;,g*’(-;'.% “ 4! > Image processing software built-in
N '*t' , P8 Supports external image processing

) 'ﬂ!s;?g: %“1’;} -;Edﬁ?. :.;' »"I:; ..LJ‘;..'{' 4 'd:
| b b i N S T .y : .
S R @l - Choose between binarization or

3 R
) $ '4 -.v,: 3:. b‘-‘vl)' '? y
: Red-Green-Blue (RGB) algorithm

; &4 > Same 3 Challenges as before:
- W 3 e * 1t ldentify the snowballs
Hirox KH-8700E Images taken with « 27d: Count the snowballs

3D Digital Microscope 2800x Magnification « 3 Measure the snowball radii

OA U-MITSUIJ
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N;/Ag1q: and a; Distribution: 3D Microscope Method

» Built-in binarization particle counter used to
identify snowballs

3 > Requires manual threshold adjustments for every
image (very subjective)

2
G

4 > Some statistics are provided immediately that can
help standardize thresholding, such as a ratio of
the selected area to the total area

» Note missed or clumped snowballs

OA U-MITSUIJ
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N;/Afiq; and a; Distribution: 3D Microscope Method
> 2" and 3" challenge: Count the number of snowballs and measure their radii

Number of Snowballs (N)

500

0.4

0.6

0.8

Snowball Distribution for
MATLAB - MLS Diffused 4in

1 1.2
Snowball Radius (a) in [um]

1.4

>

Distribution binning cannot be performed with the
microscope’s software

Data can be exported as a comma separated values
(csv) file for external analysis and binning

A csv provides an opportunity to filter unrealistic
snowball sizes

But, there’s no inherent justification to choose

which sizes are unrealistic
« SEM images used to justify filtering 0.3 ym < a; < 2.0 um
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N;/Af1q: and a; Distribution: Results
(5 Samples from 1 Drum)

Drum Side
SEM Method Microscope Method

Matte Side
SEM Method Microscope Method
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N;/Af1q: and a; Distribution: Results
(5 Samples from 1 Drum)

Drum Side
SEM Method (Oak-Mitsui ED Foil)

Average Snowball Radius [a] 0.54 um

Averaged Number Snowballs [N/88. 36 p.mz] 40

Microscope Method (Oak-Mitsui ED Foil)

Average Snowball Radius [a] 0.59 um

Averaged Number Snowballs [N/88. 36 p.mz] 10

Previous Estimates (Gould ED Foil)

Effective Snowball Radius [a] 0.5 um

Effective Number Snowballs [N/88. 36 umz] 50

Matte Side
SEM Method (Oak-Mitsui ED Foil)
Average Snowball Radius [a] 0.56 um
Averaged Number Snowballs [N/88. 36 p.mz] 38

Microscope Method (Oak-Mitsui ED Foil)

Average Snowball Radius [a] 0.7 um
Averaged Number Snowballs [N /88.36 pm?] 9

Previous Estimates (Gould ED Foil)

Effective Snowball Radius [a] 1.0 um
Effective Number Snowballs [N /88.36 pm?| 79

MITSUI—@
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N;/Af1q: and a; Distribution: Results

Drum Side
SEM Method (Oak-Mitsui ED Foil)
Area difference compared to Gould estimate -6.7 %
Microscope Method (Oak-Mitsui ED Foil)

Area difference compared to Gould estimate -72.2%

Matte Side
SEM Method (Oak-Mitsui ED Foil)

Area difference compared to Gould estimate -83.8 %
Microscope Method (Oak-Mitsui ED Foil)

Area difference compared to Gould estimate -94.4 %

Microscope method was convenient but struggled to isolate snowballs. May improve with anti-vibe table and CHT algorithm.

A possible correction to the matte side SEM method could be
to account for thedlfferent snowhball den3|ty per unit area:

Matte Side

~ Matte Side _
SEM Method with correction (Oak-Mitsui ED Foil)
Average Snowball Radius [a] 0.56 um
Averaged Number Snowballs [N /88.36 pm?] 234
Area difference compared to Gould estimate -7.1%
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Anatte/ Afiae: Perthometer Method

2 Measurements must be made per untreated sample
1 in X direction (width) & 1 in'Y direction (length)

Data points are only provided for R, Ry, R;, Rypqx., €tC.

* But, analog profile can be printed
ﬁ i M \
WA

1t challenge: Convert printed graph to digital data
e | 2nd challenge: Properly interpolate curve between points
Digital Controller 31 challenge: Measure total length and calculate area

| --MITSUI—@
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Amatte/ Afiae: Perthometer Method
» 1%t challenge: Image was scanned then Python was used to convert the pixels to linear units

c._c-—- - - c._
= 2=-3333IN -3 -
[aV] [SESESESTOR X (e T 4)] o O I P t t th
y  ssegmegy 99 rlglna rintout wi
i . =00 “Q 1 | A ) 1
i s s o s | | Continuous Graph
L] T [aY] | R - -
£ ~ ] I A
s} 0 (1] 1 ' :
c ke . - ! |
- C e -
P © o o«
(e + [s]
oow w X~ S
=E T 0o
a0 +WUMONEQ ow +
OZH#_ | ¥y o 1>

60 \ ) ! f

L e Ll R
. PR .
*Data Points at  |* v Recreated with

Original Minima |°., Discrete Data Points
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Amatte/ Afiae: Perthometer Method
» 2" challenge: Establish a minimum and maximum interpolation, then consider alternatives

Linear Interpolation Llnear InterpOIatlon } Sin Interpolation
<= (Minimum)
Sin Interpolation
(Maximum) = .
Hybrid Interpolation Hybrid Interpolation

<= (Sin | Linear)

Periodic Interpolation 3
- (Nonlinear Average)=p

| --MITSUI—@




DEsiGnGon o

Janvary 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA 21
Amatte/ Afiae: Perthometer Method

> 3" challenge: Sum interpolated arc lengths and calculate area from XY lengths
Linear (Absolute Minimum): Pythagorean Theorem s

Z-Axis
(Height) Deviation

- £ace 1.8

Flat Length

Length = \/(Flat Length)? + (Height)?

l Sin (Effective Maximum): Arc Length by Composite Simpson’s Rule

Length = 372 |1+ () dx ~ 22 [£xo) + 25757 F(3r2)) + 457 f(2-1) + F i)
Where (sm(x)) = cos(x) =2 f(x,) = \/1 + cosz(xn)

Hybrid (Intermediate): If Ax = 0 =» Linear Interpolation  Else =» Sin Interpolation

Periodic: Binarize & average peaks & valleys from R, =» Arc Length by Simpson’s Rule
Where & (ax?) = 2ax 9 f(x,) = VI+ 4a%x? Anda = |5

Frat
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Anatte/Afiae: 3D Microscope Method

>

ad

Hirox KH-8700E  »
3D Digital Microscope

Series of images taken at different

focal points
» Focal range and number of steps set by user
» Again, vibrations reduced resolution

Image processing software built-in
» Supports external image processing

3D image provides 4,4 and Asq;

measurements
 Accuracy and interpolation is undetermined

Measurement is simple
1. Record image 2. Select area 3. Click surface
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Amatte/ Af1ae: RESUILS
Drum Side Matte Side
Perthometer Method Perthometer Method
(10 Samples from 2 Drums) (10 Samples from 2 Drums)

1.0224 1.0758 1.0549 1.0222 1.1095 1.1674 1.1455 1.1165

0.003 0.003 0.003 0.006 0.006 0.007 0.007 0.028

Microscope Method Microscope Method
(5 Samples from 1 Drum) (5 Samples from 1 Drum)

OA U-MITSUIJ
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Using the snowball model in Ansys® HFSS™

» HFSS can define a finite conductivity boundary for selected conductors.
» Causal boundary function using a “single snowball form™: et
Pl 3 1 Ni4ma? :
—_— 1 + (—) (SR) > Where SR =Lt Module B adius: |D.5 |um ﬂ
smoo 8(f) , 1(8(f) Afla
i o ? 1+Tf+%(7f) e Hall-Huray Surface R atio: |23
//’1_ ——
800.00 —| ";/ ]
f But...
600.00 —| F‘/ 150.00
o /I | It was concluded a uniform snowball
? ] 7 A radius could lead to errors.
] S S Ko e ot i Tt
_____ i N ewswswwaww
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Using the snowball model in Ansys® HFSS™

The error from using a single uniform radius can be reduced by determining an Effective Radius.

(P_rough / P_smooth)

>
o

w
n

w
=]

et
n

2.0

Effective Snowball Radius

= |

Bin
Average

.# | = = Complete

// — - Effective

o a4 1 it 0] ' S = 4 -

1E-1 1E+0 1E+1 1E+2
Frequency (GHz)

Distribution

Radius

Absolute
Average

1.
2.

S

“Absolute Average” = Average a; of ALL N; snowballs
“Bin Average” = Average of the distribution bins

Characterize a;, Ni/Aflat , and Amatte/Aflat

Calculate and plot Lrough properly with a

smooth

complete snowball distribution

Calculate and plot again using the same snowball

. .. N A
packing density =224 put 24 = 1
Afiat Afiat

Tune acsrecrive 10 best fit the complete distribution

Calculate SR based on a.frective

This is not the same as an average radius.
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Using the snowball model in Ansys® HFSS™

Actual 5 Microstrip Gould Foil Distribution

R0

W e S l > Gould ED Foil was used in test board
i Tt S s ' » Gould not available for full characterization
Modeled 5” Microstrip 3 1> 1image analyzed by SEM method at 10,000x
w—_— 3 > Anaree /Af1q: assumed same as Oak-Mitsui
SR I > Gefpective = 0.63 um & SR = 1.77
Trace Width (top) 2.4579 mils ' l ‘
Trace Width (bottom) [ENZ I R S L

» Model dimensions obtained from previous

Trace Thickness 2.5746 mils Substrate
} ) measurements
N HICICRNGESIE 2.8957 mils & (2 GHz) 3.78 > Substrate parameters obtained from
Ground Thickness 1.3907 mils tan 6 (2 GHz) 0.0086 manufacturer specifications

OAK- MITSUI—@
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Conclusion
» The Huray surface roughness model has demonstrated accurate dB/in conductor loss predictions up
to 50 GHz using the snowball approximation and parameter estimations but needed a more accurate
method of characterizing the surface of electrodeposited (ED) foil to obtain model parameters.

* RMS deviation has no influence in a first principles theory.

> It was observed that a distribution of snowball sizes can impact conductor losses and should not be
averaged for characterization; therefore each parameter of the snowball approximation a;, N;/A¢jq;,
and A,,,.¢¢/Af1a: Should be characterized completely for the most accurate results.

> A few methods of more accurately characterizing an ED foil surface to obtain a;, N;/A¢4,, and
Anatee/ Ar1ae Were demonstrated using a profilometer, an SEM, and/or a 3D digital microscope.

> A method of determining a,fe.:ive TOr simulation was demonstrated and implemented in an

Ansys® HFSS™ model of a SE 5 microstrip with treated drum side ED copper foil that correlated
well with VNA measurements up to 50 GHz using the Huray model with characterized parameters.

MITSUI
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Backup

» Simulation results for 5 microstrip (drum side treated) ED copper foil
» Can the snowball approximation ignore scattered power?

» Periodic interpolation binarize process

MITSUI—@
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Using the snowball model in Ansys® HFSS™: Results

Low Profile Copper: 5" Gould_5in_Huray #

Low Profile Copper: 5"

Gould_5in_Groisse #

4.00 Curve Info 0.00 Curve Info
—— VNA S21 5in —— VNA S21 5in
—— dB(SHT1_T2,T1_T1) —— dB(ST1_12,T1_T1))
> U S | n g th e G 0 U I d =0 Huray Model with a =0 - Groisse Equation
. Characterized Snowball \"\\v_\ (Modified Hammerstad
C h aracte r I Z e d - Distribution Effective Radius 10.00-] \"‘\-\.\_\\ Empirical Fit)
distribution with / f
15,00 Nt -15.00 [
parameters from _ | E . < =
. = VNA Measurement = VNA Measurement
IaSt Sllde '20005 -20.00
25.00] 25.00-]
» Using a flat
30,00 -30.00-|
substrate model <
35,001 35,001
0.00 10100 20000 3000 400 50100 0.00 10000 oo 30000 4000 50100
Freq [GHZ] Freq [GHz]

30

» Using built-in
Groisse Equation

| »Using measured

RRMS == 12 },lm

» Using a flat
substrate model

Groisse equation (a modified Hammerstad equation) accurately predicted up to about 12 GHz.
The Huray model demonstrated a strong correlation up to 50 GHz,

- Mrrsm—@
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Can the snowball approximation ignore scattered power?
When a propagating signal encounters a good conducting sphere, like copper, the dipole signal can either be

: 10w, 2(8
scattered (outgoing power): Ogcattered(®) ~ Tkzal 1+- ==
L
or
2
absorbed (incoming power): O absorbed (@) = 31tk2a16/ 1+— + 57]

The snowball approximation estimates the o;,.,;; of the Huray model
using only the dipole 0,550,104 fOr a good conducting sphere:

Kow$ J UITTRY
Prough |Hol? AmattetXi—1 NiOtotal iE|H0|

. 2
~ 4 , l Prough ~ Amatte + 62] (Ni”ai)/<1 + 24 )
Psmooth #0w5|H0|2Aﬂat Psmooth Aflat =1 Aflat a; = 2af

The 3 following slides conclude: Yes, scattered power can be ignored for frequencies under 100 GHz.

MITSUI—@
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Can the snowball approximation ignore scattered power?
Absorption and scattering cross- 12 ; -
sections of various size copper o) [
. S| P
spheres as a function of frequency. 10 EEEE i P
O:'ihsorhccl 10”° Sl ':{:;{f(”: % — ! - -!_} -
Taf 10_1;{) \"‘ai =0.5 um—-—-—__-,—-:';"fi’/://
. . . g Ng; =0.2 pm ——=5 |
Comparing the effective absorption | Zwaerea 10 ——
. o ;‘Z'u{." 10718 P - 1
and scattering cross section to the Pt i
geometric area, power is primarily o o ;
absorbed for frequencies < 100 GHz. S e ;
N e ,’./'/ 1
So... Yes, scattering effects are N 10° 10”2 10" 10° 10! 10° 10° 10* 10°
insignificant below 100 GHz Frequency (GHz)
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Can the snowball approximation ignore scattered power?

9 absorbed E}): Lo ’7;_*;:&1/071 - ;-I:I; ————————> /’ e
Ra e N_w 05 pm- - s
<, attered 10742 A 0-2 I"I'Iri_"‘?_/:—'l“/
As a signal propagates across many snowballs, the
effective area increases and power continues to be =
absorbed with almost no power being scattered. S L U .
Frequency (GHz)

At frequencies <100 GHz, snowballs are more
like small Pac-Mans eating (absorbing) power
rather than big boulders scattering it.

Note: This growing snowball illustration is only a
qualitative visual aid. It does not represent the
-MITSUI actual physics nor are their relative sizes accurate.
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Can scattered power be ignored? and is the only example that fits on a slide.
E— Copper Diameter:
i . e < 530 px
= Absorbed Power Diameter:
15 px
)
Frequency (GHz)
Some perspective (@ 100 GHz): FOOﬂii'!'!F'e'd 0.005 px
Secti ; : =i il Scattered Power Diameter
Copper Snowball 1um 100 m == II“ H =

At this scale, the scattered power cross

SUb -compact  gsection is too small to even exist on this slide.

Absorbed Power  0.029 um
Car

Scattered Power 5pm 0.001 M ¢m :«;_ squito

Yes, scattering effects are insignificant below 100 GHz.
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Periodic Interpolation Binarization Process
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Calculate the arc length of 1 average peak and 1 average trough: Liotqr = NpeaksLpeak + NeroughsLtrough




