Image: Sector Conductor

 Characterization for Accurate Conductor

 Loss Modeling

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

## Michael Griesi (Speaker)

MS Student, University of South Carolina

## Dr. Paul G. Huray

Professor of Electrical Engineering, University of South Carolina

## Dr. Olufemi (Femi) Oluwafemi

Signal Integrity Lead, Intel Corporation

## Stephen Hall

**Principal Engineer, Intel Corporation** 

## John Fatcheric

Chief Operating Officer, Oak-Mitsui







## Agenda

- > Conductor loss by empirical fit compared to first principles model
- Identifying characterization parameters
- Characterizing the electrodeposited (ED) copper foil surface
- > Applying parameters to simulation
- Conclusion







## DESIGNCON<sup>®</sup> 2015

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

## **Conductor Loss by Empirical Fit v First Principles Model**



For designs above a few GHz, the conventional 2D conductor loss empirical fit fails. The 3D Huray model is correct but needs improved parameters for characterizing ED copper.







### What parameters should be obtained?

Typical ED copper foil used for PCB fabrication begins with a raw untreated copper surface.

**DESIGN FON** 

Copper "anchor nodules" are added to strengthen PCB adhesion on a treated copper surface.



The Huray model describes the power loss associated with the untreated surface and anchor nodules.

$$\frac{P_{rough}}{P_{smooth}} \approx \frac{\frac{\mu_0 \omega \delta}{4} |H_0|^2 A_{matte} + \sum_{i=1}^j N_i \sigma_{total,i\frac{\eta}{2}} |H_0|^2}{\frac{\mu_0 \omega \delta}{4} |H_0|^2 A_{flat}}$$

 $\frac{P_{rough}}{P_{smooth}} \approx \frac{Untreated Area + Anchor Nodules}{Unit Area (Perfectly Flat)}$ 







### What parameters should be obtained?



ESIGN HON

Approximating the copper anchor nodules as spherical "snowballs" and substituting the dipole absorption cross section of a distribution of j different sized snowballs yields:

$$\frac{P_{rough}}{P_{smooth}} \approx \frac{A_{matte}}{A_{flat}} + 6\sum_{i=1}^{j} \left(\frac{N_{i}\pi a_{i}^{2}}{A_{flat}}\right) / \left(1 + \frac{\delta}{a_{i}} + \frac{\delta^{2}}{2a_{i}^{2}}\right)$$

The parameters for electrodeposited copper foil surface characterization are thus:

- 1. The radius of the  $i^{th}$  "snowball" (anchor nodule)
- 2. The number of snowballs with radius  $a_i$  per unit flat area
- 3. The relative surface area without snowballs per unit flat area







 $a_i$ 

 $N_i/A_{flat}$ 

A<sub>matte</sub>/A<sub>flat</sub>

### What parameters should be obtained?

10<sup>3</sup>

absorbed

 $\frac{scattered}{\pi a_r^2}$ 

 $\pi a_{i}$ 

Previous snowball model estimations assumed the untreated surface was perfectly flat and all the snowballs were of uniform average size.

Simplified snowball stack-up used for previous estimations.

**JESIGN FON®** 

More realistic description.

Does a distribution of different size snowballs on a non-flat surface have an impact on losses?

Absorption and scattering cross-sections of various size copper spheres as a function of frequency.









Does a snowball size distribution matter or can sizes be averaged for characterization?



- A normal distribution with the same number of snowballs and same average radius of 0.5 μm can lead to higher loss
- A wider distribution with the same number of snowballs and same average radius of 0.5 µm can lead to higher loss
- The  $A_{matte}/A_{flat}$  parameter increases losses at all frequencies
- The Hammerstad empirical fit saturates at an arbitrary maximum of 2.0

Yes, a distribution of snowball sizes can impact losses and should not be averaged for characterization. All model parameters  $a_i$ ,  $N_i/A_{flat}$ , &  $A_{matte}/A_{flat}$  should be obtained for the most accurate results.







January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

## $N_i/A_{flat}$ and $a_i$ Distribution: SEM Analysis Method



SEII v 2.3 PCI Scanning Electron Microscope Images taken with 3500x Magnification

MITSUI

- 1<sup>st</sup> challenge: Identify the snowballs
- <sup>2nd</sup> challenge: Count the snowballs
- 3<sup>rd</sup> challenge: Measure the snowball radii





## $N_i/A_{flat}$ and $a_i$ Distribution: SEM Analysis Method

▶ 1<sup>st</sup> challenge: Identify the snowballs



DESIGN CON®

Use a *Circular Hough Transform* (*CHT*) to find and circle the snowballs.

A CHT uses image intensity to search for 'dark' or 'bright' circles after edge detection. This is not binarization.

\*\*Once the first CHT parameters are set, they can be used for subsequent analyses.







## $N_i/A_{flat}$ and $a_i$ Distribution: SEM Analysis Method

> 2<sup>nd</sup> and 3<sup>rd</sup> challenge: Count the number of snowballs and measure their radii



Once the snowballs (or circles) are found using a *Circular Hough Transform* (CHT), they can be counted and measured.

\*\*This is easy to extract as they are defined by the CHT.





January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

## $N_i/A_{flat}$ and $a_i$ Distribution: 3D Microscope Method



Hirox KH-8700E 3D Digital Microscope

Images taken with 2800x Magnification

- Images were taken at 2800x
  Excessive vibration made it difficult to increase
- Image processing software built-in
   Supports external image processing
- Built-in particle counting software
   Choose between binarization or Red-Green-Blue (RGB) algorithm
- Same 3 Challenges as before:
  - 1<sup>st</sup>: Identify the snowballs
  - 2<sup>nd</sup>: Count the snowballs
  - 3<sup>rd</sup>: Measure the snowball radii







## $N_i/A_{flat}$ and $a_i$ Distribution: 3D Microscope Method

▶ 1<sup>st</sup> challenge: Identify the snowballs

DESIGN CON



- Built-in binarization particle counter used to identify snowballs
- Requires manual threshold adjustments for every image (very subjective)
- Some statistics are provided immediately that can help standardize thresholding, such as a ratio of the selected area to the total area
- Note missed or clumped snowballs





## $N_i/A_{flat}$ and $a_i$ Distribution: 3D Microscope Method

> 2<sup>nd</sup> and 3<sup>rd</sup> challenge: Count the number of snowballs and measure their radii



VESIGN HON

- Distribution binning cannot be performed with the microscope's software
- Data can be exported as a comma separated values (csv) file for external analysis and binning
- A csv provides an opportunity to filter unrealistic snowball sizes
- But, there's no inherent justification to choose which sizes are unrealistic
  - SEM images used to justify filtering 0.3  $\mu$ m <  $a_i$  < 2.0  $\mu$ m









MITSUI

О





January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

## $N_i/A_{flat}$ and $a_i$ Distribution: Results

(5 Samples from 1 Drum)

| Drum Side                                            |         | Matte Side                                           |         |  |  |
|------------------------------------------------------|---------|------------------------------------------------------|---------|--|--|
| SEM Method (Oak-Mitsui ED Foil)                      |         | SEM Method (Oak-Mitsui ED Foil)                      |         |  |  |
| Average Snowball Radius [ <i>a</i> ]                 | 0.54 μm | Average Snowball Radius [ <b>a</b> ]                 | 0.56 µm |  |  |
| Averaged Number Snowballs $[N/88.36 \mu\text{m}^2]$  | 40      | Averaged Number Snowballs $[N/88.36 \mu\text{m}^2]$  |         |  |  |
| Microscope Method (Oak-Mitsui ED Foil)               |         | Microscope Method (Oak-Mitsui ED Foil)               |         |  |  |
| Average Snowball Radius [ <b>a</b> ]                 | 0.59 μm | Average Snowball Radius [ <b>a</b> ]                 | 0.7 μm  |  |  |
| Averaged Number Snowballs $[N/88.36 \mu\text{m}^2]$  | 10      | Averaged Number Snowballs $[N/88.36 \mu m^2]$        | 9       |  |  |
| Previous Estimates (Gould ED Foil)                   |         | Previous Estimates (Gould ED Foil)                   |         |  |  |
| Effective Snowball Radius [ <b>a</b> ]               | 0.5 μm  | Effective Snowball Radius [ <b>a</b> ]               | 1.0 µm  |  |  |
| Effective Number Snowballs $[N/88.36 \mu\text{m}^2]$ | 50      | Effective Number Snowballs $[N/88.36 \mu\text{m}^2]$ | 79      |  |  |







January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

## $N_i/A_{flat}$ and $a_i$ Distribution: Results

| Drum Side                                         |         | Matte Side                                      |         |  |
|---------------------------------------------------|---------|-------------------------------------------------|---------|--|
| SEM Method (Oak-Mitsui ED Foil)                   |         | SEM Method (Oak-Mitsui ED Foil)                 |         |  |
| Area difference compared to Gould estimate -6.7 % |         | Area difference compared to Gould estimate -83. |         |  |
| Microscope Method (Oak-Mitsui ED Foil)            |         | Microscope Method (Oak-Mitsui ED                | Foil)   |  |
| Area difference compared to Gould estimate        | -72.2 % | Area difference compared to Gould estimate      | -94.4 % |  |

Microscope method was convenient but struggled to isolate snowballs. May improve with anti-vibe table and CHT algorithm.

| A possible correction to the matte side SEM method could be<br>to account for the different snowball density per unit area: | Matte Side<br>SEM Method with correction (Oak-Mitsui ED Foil) |         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------|--|--|
| to decount for the different show out density per unit ded.                                                                 | Shiri Method with confection (our mitsu                       |         |  |  |
|                                                                                                                             | Average Snowball Radius [ <b>a</b> ]                          | 0.56 µm |  |  |
|                                                                                                                             | Averaged Number Snowballs $[N/88.36 \mu\text{m}^2]$           | 234     |  |  |
| Drum Side Matte Side                                                                                                        | Area difference compared to Gould estimate                    | -7.1 %  |  |  |
|                                                                                                                             |                                                               | (intel  |  |  |

MITSUI





## Amatte/Aflat: Perthometer Method

- 2 Measurements must be made per untreated sample
  1 in X direction (width) & 1 in Y direction (length)
- > Data points are only provided for  $R_a$ ,  $R_q$ ,  $R_z$ ,  $R_{max}$ , etc.
  - But, analog profile can be printed



- > 1<sup>st</sup> challenge: Convert printed graph to digital data
- ➤ 2<sup>nd</sup> challenge: Properly interpolate curve between points
- > 3<sup>rd</sup> challenge: Measure total length and calculate area







VESIGN HOM

## A<sub>matte</sub>/A<sub>flat</sub>: Perthometer Method

 $\succ$  1<sup>st</sup> challenge: Image was scanned then Python was used to convert the pixels to linear units









**JESIGN FON** 

## A<sub>matte</sub>/A<sub>flat</sub>: Perthometer Method

> 2<sup>nd</sup> challenge: Establish a minimum and maximum interpolation, then consider alternatives









January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

## Amatte/Aflat: Perthometer Method

➢ 3<sup>rd</sup> challenge: Sum interpolated arc lengths and calculate area from XY lengths

Linear (Absolute Minimum): Pythagorean TheoremSurface LengthZ-Axis<br/>(Height) DeviationLength =  $\sqrt{(Flat \ Length)^2 + (Height)^2}$ Flat LengthEngth

Sin (Effective Maximum): Arc Length by Composite Simpson's Rule

Length = 
$$\int_0^{\pi/2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \approx \frac{\Delta x}{3} \left[ f(x_0) + 2\sum_{j=1}^{n/2-1} f(x_{2j}) + 4\sum_{j=1}^{n/2} f(x_{2j-1}) + f(x_n) \right]$$
  
Where  $\frac{dy}{dx}(\sin(x)) = \cos(x) \Rightarrow f(x_n) = \sqrt{1 + \cos^2(x_n)}$ 

Hybrid (Intermediate): If  $\Delta x = 0 \Rightarrow$  Linear Interpolation Else  $\Rightarrow$  Sin Interpolation

Periodic: Binarize & average peaks & valleys from  $R_a \Rightarrow$  Arc Length by Simpson's Rule Where  $\frac{dy}{dx}(ax^2) = 2ax \Rightarrow f(x_n) = \sqrt{1 + 4a^2x^2}$  And  $a = \left[\frac{4R_a}{l_{flat}^2}\right]$ 







#### January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA



Hirox KH-8700E 3D Digital Microscope

## Amatte/Aflat: 3D Microscope Method

- Series of images taken at different focal points
  - Focal range and number of steps set by user
  - Again, vibrations reduced resolution
- Image processing software built-in
   Supports external image processing
  - 3D image provides A<sub>matte</sub> and A<sub>flat</sub> measurements
    - Accuracy and interpolation is undetermined
- Measurement is simple
   1. Record image 2. Select area 3. Click surface







**DESIGN(CON®** 



| Drum Side                                       |        |                           | Matte Side                                      |          |              |        |                         |                 |   |          |
|-------------------------------------------------|--------|---------------------------|-------------------------------------------------|----------|--------------|--------|-------------------------|-----------------|---|----------|
| Perthometer Method<br>(10 Samples from 2 Drums) |        |                           | Perthometer Method<br>(10 Samples from 2 Drums) |          |              |        |                         |                 |   |          |
|                                                 | Linear | Sin                       | Hybrid                                          | Periodic |              | Linear | Sin                     | Hybri           | d | Periodic |
| Average                                         | 1.0224 | 1.0758                    | 1.0549                                          | 1.0222   | Average      | 1.1095 | 1.1674                  | 1.145           | 5 | 1.1165   |
| $\sigma_{s}$                                    | 0.003  | 0.003                     | 0.003                                           | 0.006    | $\sigma_{s}$ | 0.006  | 0.007                   | 0.007           | 7 | 0.028    |
|                                                 |        | roscope M<br>nples from 1 |                                                 |          |              |        | roscope N<br>nples from |                 |   |          |
|                                                 | Ave    | erage 1                   | .13                                             |          |              | Ave    | erage                   | 1.17            |   |          |
|                                                 | c      | <i>σ<sub>s</sub></i> 0.   | 028                                             |          |              | c      | $\sigma_s$ C            | .022            |   |          |
|                                                 | (5 Sar | nples from 1<br>erage 1   | Drum)<br>.13                                    |          |              | (5 San | nples from<br>erage     | 1 Drum)<br>1.17 |   |          |











### Using the snowball model in Ansys® HFSS™

- ▶ HFSS can define a finite conductivity boundary for selected conductors.
- Causal boundary function using a "single snowball form":

UESTAN HANS



| Surface Roughness Model:  | Groisse | € Hu | uray |   |  |
|---------------------------|---------|------|------|---|--|
| Nodule Radius:            | 0.5     |      | um   | • |  |
| Hall-Huray Surface Ratio: | 2.9     |      |      |   |  |
|                           |         |      |      |   |  |

#### But...

# It was concluded a uniform snowball radius could lead to errors.



## Using the snowball model in Ansys® HFSS™

The error from using a single uniform radius can be reduced by determining an **Effective Radius**.



I ESIGN HON

"Absolute Average" = Average  $a_i$  of **ALL**  $N_i$  snowballs "Bin Average" = Average of the distribution bins

- 1. Characterize  $a_i$ ,  $N_i/A_{flat}$ , and  $A_{matte}/A_{flat}$
- 2. Calculate and plot  $\frac{P_{rough}}{P_{smooth}}$  properly with a complete snowball distribution
- 3. Calculate and plot again using the same snowball packing density  $\frac{N_{total}}{A_{flat}}$  but  $\frac{A_{matte}}{A_{flat}} = 1$
- 4. Tune  $a_{effective}$  to best fit the complete distribution
- 5. Calculate *SR* based on  $a_{effective}$

This is not the same as an *average* radius.











#### ➢ Gould ED Foil was used in test board

- Gould not available for full characterization
- ▶ 1 image analyzed by SEM method at 10,000x
  - Amatte/Aflat assumed same as Oak-Mitsui
  - $a_{effective} = 0.63 \ \mu m \ \& \ SR = 1.77$
- Model dimensions obtained from previous measurements
- Substrate parameters obtained from manufacturer specifications



**JESIGN HON** 



Using the snowball model in Ansys® HFSS™

 $\triangleright$ 



ESIGN HON

### Conclusion

- The Huray surface roughness model has demonstrated accurate *dB/in* conductor loss predictions up to 50 GHz using the snowball approximation and parameter estimations but needed a more accurate method of characterizing the surface of electrodeposited (ED) foil to obtain model parameters.
  - RMS deviation has no influence in a first principles theory.
- ➢ It was observed that a distribution of snowball sizes can impact conductor losses and should not be averaged for characterization; therefore each parameter of the snowball approximation a<sub>i</sub>, N<sub>i</sub>/A<sub>flat</sub>, and A<sub>matte</sub>/A<sub>flat</sub> should be characterized completely for the most accurate results.
- > A few methods of more accurately characterizing an ED foil surface to obtain  $a_i$ ,  $N_i/A_{flat}$ , and  $A_{matte}/A_{flat}$  were demonstrated using a profilometer, an SEM, and/or a 3D digital microscope.
- A method of determining  $a_{effective}$  for simulation was demonstrated and implemented in an Ansys® HFSS<sup>TM</sup> model of a SE 5" microstrip with treated drum side ED copper foil that correlated well with VNA measurements up to 50 GHz using the Huray model with characterized parameters.







### References

- [1] O. Oluwafemi, "Surface Roughness and its Impact on System Power Losses," Ph.D. dissertation, Dept. of Elec. Eng., Univ. of South Carolina, Columbia, SC 2007
- [2] B. Curran, "Loss Modeling in Non-Ideal Transmission Lines for Optimal Signal Integrity," Ph.D. dissertation, Dept. of Elec. Eng., Tech. Univ. of Berlin, Berlin, Germany 2012, pp. 15-17
- [3] P. G. Huray et al., "Impact of Copper Surface Texture on Loss: A Model that Works," DesignCon 2010, vol. 1, 2010, pp. 462-483
- [4] P. G. Huray, *The Foundations of Signal Integrity*. Hoboken, NJ: John Wiley & Sons, Inc., 2010, pp. 216-276
- [5] E. Bogatin et al., "Which one is better? Comparing Options to Describe Frequency Dependent Losses," DesignCon 2013, vol. 1, 2013, pp. 469-494
- [6] H. Kuba et al., "Automatic Particle Detection and Counting By One-Class SVM From Microscope Image," Proc. Int. Conf. on Neural Information Processing, Lecture Notes in Computer Science, vol.5507, 2009, pp. 361-368
- [7] M. Block and R. Rojas, "Local Contrast Segmentation to Binarize Images," in Proc. of the 3rd International Conference on Digital Society (ICDS 2009), vol.1, no.1, Cancun, Mexico, 2009, pp.294-299
- [8] C. Labno, "Two Ways to Count Cells with ImageJ," [Online]. Available: http://digital.bsd.uchicago.edu/resources\_files/cell%20counting%20automated%20and%20manual.pdf
- [9] T. Atherton and D. Kerbyson, "Size invariant circle detection," Image and Vision Computing. Vol. 17, no. 11, 1999, pp. 795-803
- [10] J. Bracken, "A Causal Huray Model for Surface Roughness," DesignCon 2012, vol. 4, 2012, pp. 2880-2914
- [11] Ansys, Inc., "HFSS™ Online Help," pp. 19.104-19.109. [Online]. Available:

https://support.ansys.com/portal/site/AnsysCustomerPortal/template.fss?file=/prod\_docu/15.0/ebu/hfss\_onlinehelp.pdf

- [12] C. Jones, "Measurement and analysis of high frequency resonances in printed circuit boards," MS dissertation, Dept. of Elec. Eng., Univ. of South Carolina, Columbia, SC 2010
- [13] Isola, "IS620 Typical Laminate Properties." [Online]. Available: http://advantage-dev.com/services/docs/Isola%20IS620rev2.pdf
- [14] A. Horn et al., "Effect of conductor profile on the insertion loss, phase constant, and dispersion in thin high frequency transmission lines," DesignCon 2010, vol. 1, 2010, pp. 440-461







## Backup

- Simulation results for 5" microstrip (drum side treated) ED copper foil
- > Can the snowball approximation ignore scattered power?
- Periodic interpolation binarize process







**UESIGN HON** 

### Using the snowball model in Ansys® HFSS™: Results



Groisse equation (a modified Hammerstad equation) accurately predicted up to about 12 GHz. The Huray model demonstrated a strong correlation up to 50 GHz.







## Can the snowball approximation ignore scattered power?

When a propagating signal encounters a good conducting sphere, like copper, the dipole signal can either be

```
scattered (outgoing power):
```

or

absorbed (incoming power):

$$\sigma_{scattered}(\omega) \approx rac{10\pi}{3} k_2^4 a_1^6 \left[ 1 + rac{2}{5} \left( rac{\delta}{a_i} 
ight) 
ight]$$

$$\sigma_{absorbed}(\omega) \approx 3\pi k_2 a_1^2 \delta / \left[1 + \frac{\delta}{a_i} + \frac{\delta^2}{2a_i^2}\right]$$

The snowball approximation estimates the  $\sigma_{total,i}$  of the Huray model using only the *dipole*  $\sigma_{absorbed}$  for a good conducting *sphere*:

$$\frac{P_{rough}}{P_{smooth}} \approx \frac{\frac{\mu_0 \omega \delta}{4} |H_0|^2 A_{matte} + \sum_{i=1}^j N_i \sigma_{total,i} \frac{\eta}{2} |H_0|^2}{\frac{\mu_0 \omega \delta}{4} |H_0|^2 A_{flat}} \longrightarrow \frac{P_{rough}}{P_{smooth}} \approx \frac{A_{matte}}{A_{flat}} + 6 \sum_{i=1}^j \left(\frac{N_i \pi a_i^2}{A_{flat}}\right) / \left(1 + \frac{\delta}{a_i} + \frac{\delta^2}{2a_i^2}\right)$$

The 3 following slides conclude: Yes, scattered power can be ignored for frequencies under 100 GHz.







### Can the snowball approximation ignore scattered power?

Absorption and scattering crosssections of various size copper spheres as a function of frequency.

Comparing the effective absorption and scattering cross section to the geometric area, power is primarily absorbed for frequencies < **100 GHz**.

So... Yes, scattering effects are insignificant below 100 GHz









### Can the snowball approximation ignore scattered power?

MITSUI



**JESIGN HOM** 

As a signal propagates across many snowballs, the effective area increases and power continues to be absorbed with almost no power being scattered.

At frequencies <100 GHz, snowballs are more like small Pac-Mans eating (absorbing) power rather than big boulders scattering it.





actual physics nor are their relative sizes accurate.



# JESTAN HON

January 27-30, 2015 | Santa Clara Convention Center | Santa Cl

Can scattered power be ignored?



#### Some perspective (@ 100 GHz):

| X-Sectional Area | Diameter | Diameter  |                    |
|------------------|----------|-----------|--------------------|
| Copper Snowball  | 1 µm     | 100 m 🗲   |                    |
| Absorbed Power   | 0.029 μm | 2.9 m 🗧   | Sub-compact<br>Car |
| Scattered Power  | 5 pm     | 0.001 m 🖨 | 9 (9)              |

This cross-sectional image *is* to scale for 100 GHz, and is the only example that fits on a slide.





LESIGN HON



### **Periodic Interpolation Binarization Process**

Calculate the arc length of 1 average peak and 1 average trough:  $L_{total} = N_{peaks}L_{peak} + N_{troughs}L_{trough}$ 





