DESIGNEON® 2014

Effective Conductivity Concept for Modeling Conductor Surface Roughness

G. Gold, K. Helmreich Institute of Microwaves and Photonics Friedrich-Alexander-University Erlangen-Nuremberg

gerald.gold@fau.de

klaus.helmreich@fau.de

January 28-31, 2014 | Santa Clara Convention Center | Santa Clara, CA

Contents

Introduction

- Existing Models for Surface Roughness
- Inconsistencies of Common Approaches
- Model for Skin Effect in Rough Surfaces
 - Dimension Consideration
 - Modeling Approach
 - Surface Roughness Characterization
 - Conductivity Gradient Model
- Concept of Effective Conductivity
 - Direct Measurement
 - Application in Field Solvers
- Conclusion

Introduction

- Accurate models of conductor behavior are essential for predictive simulations: antennas, resonators, connectors, filters, transmission lines
- Today, PCB transmission lines are operated up to the two digit Gigahertz range
- Transmission line loss:
- Usally dominated by dielectric loss αf
- Theory predicts $a\sqrt{f}$ dependence due to skin effect for conductor loss
- Skin effect at frequencies > 1GHz:
- Skin depth decreases to the order of surface roughness:
 - conductor surface can no longer be regarded as ideally smooth
 - \sqrt{f} dependence is no longer valid

Existing Models for Surface Roughness

Phenomenological models:

- Correction factor Kadapted to measurement
- + Function of RMS roughness R_q
- •Hammerstad & Jensen $K_{HJ} = 1 + \frac{2}{\pi} \tan^{-1} \left(1.4 \frac{R_q}{\delta} \right)$ •Groiss $K_G = 1 + \exp\left(- \left(\frac{\delta}{2R_q} \right)^{1.6} \right)$

•Fail at high frequencies resp. high values of R_q

+ Physical models:

2992

Huray's "snowball"-modell:

analytical calculation of additional power loss due to copper "snowballs"

$$K_H = 1 + \frac{3}{2} \sum_{i=1}^{j} \left(\frac{N_i}{A_{hex} \cdot 4\pi a_i^2} \right) \cdot \left(1 + \frac{\delta}{a_i} + \frac{\delta^2}{a_i^2} \right)^{-1}$$

• Others:

- +Fractal surface, "brute force" 3D simulation, ...
- major drawbacks: many parameters, often hardly observable

Inconsistencies of Common Modeling Approaches

Current 'indirection'

2992

◆The displacement amplitude of an conduction electron is only $\approx 10^{-12}$ m (P = 10mW at 1GHz)

There is no 'current indirection' in a rough surface in a sense that the current path follows any 'surface contour'

Model roughness as piecewise smooth facets

 Surface profiles cannot be modeled by ideally smooth facets because then the solver assumes the skin effect for an infinite plane on their surfaces

+The plane skin effect is only valid if feature sizes >> λ

Model microscopic features

It is not necessary to simulate surface roughness on a microscopic level because it is averaged over the order of a wavelength anyway

DesignCon[®] 2014

G. Gold, K. Helmreich

Dimensions Consideration

Relevant dimensions for $f \approx 1-100$ GHz:

- Wavelength: $\lambda \approx 2-200 \text{mm}$
- 1. Trace width: $W \approx 100 \mu m$
- +Trace thickness: $t \approx 18 \mu m$
- +Skin depth (in Cu): $\delta \approx 0.2 2\mu m$

Situation on PCB in the operating frequency range:

- •Wave length $\lambda \gg$ conductor dimensions w, t
- •Conductor dimensions w, $t \gg$ skin depth δ Skin depth $\delta \leq$ surface roughner

Conclusion:

- +As $W, t \gg R_q$, the conductor surface basically is "plane"
- +But there is roughness on a microscopic scale ($\ll \lambda, w, t$)

• Propagating wave does not "see" individual peaks and pits
however with no abrupt border between dielectric and conductor

Modeling Approach

- No abrupt border between dielectric and conductor
- Not necessary to model microscopic peaks
- Rather model the transition from dielectric to conductor perpendicular to the surface
- Maintain translation invariar
- Appropriate macroscopic
- model surface roughness
 - σ is a function of distance σ increases with copper-density
 - $\sigma(x)$ is proportional to the propaging or maning metal in a plane parallel to the surface
 - $\sigma(x)$ increases from virtually zero in the dielectric to bulk metal conductivity

s transition: conductivity σ

pendicular to the surface:

Surface Roughness Characterization

- Assume normally distributed surface profile
- $\sigma(x)$ corresponds to the cumulative distribution function (CDF) of surface profile:

$$\sigma(x) = \sigma_{bulk} \cdot \int_{-\infty}^{x} PDF(x) \ du = \sigma_{bulk} \cdot \int_{-\infty}^{x} \exp\left(-\frac{u^2}{2R_q^2}\right) \ du$$

- Surface characterisation:
- Optical scanning system: Confirms normal distribution

One single model parameter !

DESIGNCON[®] 2014

Conductivity Gradient Model Derivation

Skin effect in rough surfaces is deduced from Maxwell's equations with time harmonic fields and location dependent conductivity $\sigma(r)$:

Using Maxwell-Ampere's Law:

for $\mu_r = 1$ yields:

$$\underline{\nabla} \times \left(\frac{\underline{B}}{\mu_r}\right) = j\omega \frac{1}{c^2} \left(\varepsilon_r \underline{E}\right) + \mu_0 \underline{J} \quad \text{, inserting Ohm's Law } \underline{J} = \sigma \underline{E}$$

$$\underline{\nabla} \times \underline{B} = \left(j\omega \frac{\varepsilon_r}{c^2} + \mu_0 \sigma\right) \underline{E}$$

Even at f = 100GHz, $\omega \varepsilon_r / c^2 \ll \mu_0 \sigma$, if $\sigma \gg 5.6$ S/m, so displacement current density can be neglected for σ down to ≈ 1 ppm of copper conductivity:

Skin Effect in Rough Surfaces

Assume gradual transition to bulk conductivity perpendicular to the mean surface

- Focus on one-dimensional problem
- The gradient model
- Not only delivers a correction factor
- Describes skin-effect in rough surfaces as a whole by one parameter: RMS-roughness R_q
- Calculates profiles of magnetic field strength and loss power density for a given roughness distribution
- Skin effect in ideally smooth surface:
- Magnetic field abruptly starts to decline
- Gradient model for skin effect in rough surger.
- Magnetic field smoothly decreases as it enters the range of surface roughness

Concept of Effective Conductivity

- Comparison of loss power densities: Gradient Model vs. conventional skin effect
- Effective conductivity is defined as the conductivity of a material with ideally smooth surface that would cause the same loss as the rough surface

Designuon

G. Gold, K. Helmreich

Direct Measurement of the Effective Conductivity

- ← Cylindrical cavity resonator operated at \approx 10, 15, 21GHz (H_{01x} modes)
- Electrical field has circular component E_{ϕ} only
- ✤ Exchangeable lids of different surface roughness R_q
- + Influence of surface roughness measurable by quality factor Q
- Treating rough surfaces as if they were ideally smooth yields σ_{eff}

Direct Measurement of the Effective Conductivity

- RMS-roughness R_q of lids was obtained by optical scanning system
- Responses for \$\sigma_{eff}\$ predicted by Gradient Model from \$R_q\$ agree with measured \$\sigma_{eff}\$:

Application in Field Solvers as Impedance Boundary Condition

Advantages of impedance boundary conditions:

- +Not necessary to mesh inside the conductor
- No increase of computation time
- Impedance boundary condition with in the conductor to its surface

► Modification: $\sigma \rightarrow \sigma_{eff}$ (f), $\delta \rightarrow \delta(\sigma_{eff})$!

2222

Application in Field Solvers as Impedance Boundary Condition

DesignCon[®] 2014

Conclusion

- + Surface roughness is modeled as a conductivity gradient $\sigma(x)$
 - $\sigma(x)$ is proportional to the CDF of the surface roughness profile
 - Single parameter model: R_q
 - R_q measurable with optical scanning system or microsection
 - Datasheets often provide values for R_q
- Frequency dependent effective conductivity Oeff
 - Derived from comparison to loss power density of smooth surface
 - Surface impedance as boundary condition
 - Easily applicable with commercial field solvers: import once to library

DESIGNCON[®] 2014

No increase of computation time