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Introduction 

✦ Accurate models of conductor behavior are essential for predictive simulations:  

antennas, resonators, connectors, filters, transmission lines 

✦ Today, PCB transmission lines are operated up to the two digit Gigahertz range 

✦ Transmission line loss: 

✦ Usally dominated by dielectric loss ∝ f 

✦ Theory predicts a  - dependence  

due to skin effect for conductor loss 

✦ Skin effect at frequencies > 1GHz: 

✦ Skin depth decreases to the order  

of surface roughness: 

‣ conductor surface can no longer  

be regarded as ideally smooth 

‣  - dependence is no longer valid  

f

f
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Existing Models for Surface Roughness 

✦Phenomenological models: 

✦Correction factor K adapted to measurement 

✦Function of RMS roughness Rq 

•Hammerstad & Jensen 

•Groiss 

•Fail at high frequencies resp. high values of Rq  

✦Physical models: 

✦Huray‘s „snowball“-modell: 

analytical calculation of additional power loss due to copper „snowballs“  

 

✦Others: 

✦Fractal surface, „brute force“ 3D simulation, … 

✦major drawbacks:  many parameters, often hardly observable 

Ni, ai ? 

[P. Huray, et al., DesignCon2010] 
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Inconsistencies of Common  

Modeling Approaches 

Current ‘indirection‘ 

✦The displacement amplitude of an conduction electron is only ≈10-12m 

(P = 10mW at 1GHz) 

✦There is no ‘current indirection‘ in a rough surface in a sense that the 

current path follows any ’surface contour’ 

Model roughness as piecewise smooth facets 

✦Surface profiles cannot be modeled by ideally smooth facets because 

then the solver assumes the skin effect for an infinite plane on their 

surfaces 

✦The plane skin effect is only valid if feature sizes >> λ 

Model microscopic features 

✦It is not necessary to simulate surface roughness on a microscopic level 

because it is averaged over the order of a wavelength anyway  
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Dimensions Consideration 

Relevant dimensions for f ≈ 1–100GHz: 

✦Wavelength: λ ≈ 2 – 200mm 

1.Trace width: w ≈ 100µm 

✦Trace thickness: t ≈ 18µm  

✦Skin depth (in Cu): δ ≈ 0.2 – 2µm  

Situation on PCB in the operating frequency range: 

•Wave length λ ≫ conductor dimensions w, t 

•Conductor dimensions w, t ≫ skin depth δ Skin depth δ ≲ surface roughness Rq 

Conclusion: 

✦As w, t ≫ Rq, the conductor surface basically is “plane” 

✦But there is roughness on a microscopic scale (≪ λ, w, t) 

✦Propagating wave does not “see“ individual peaks and pits, but “mean“ plane surface, 

however with no abrupt border between dielectric and conductor 
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Modeling Approach 

✦ No abrupt border between dielectric and conductor 

✦ Not necessary to model microscopic peaks 

✦ Rather model the transition from dielectric to conductor perpendicular to the surface 

✦ Maintain translation invariance parallel to the surface 

✦ Appropriate macroscopic physical parameter to describe this transition: conductivity σ 

✦ model surface roughness as gradient of conductivity perpendicular to the surface: 

‣ σ is a function of distance x from the “mean“ surface 

‣ σ(x) is proportional to the probability of finding metal in a plane parallel to the surface 

‣ σ(x) increases from virtually zero in the dielectric to bulk metal conductivity 

σ increases with copper-density 

x 
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Surface Roughness Characterization 

✦ Assume normally distributed surface profile 

✦ σ(x) corresponds to the cumulative distribution function (CDF) of surface profile: 

✦ Surface characterisation: 

✦ Optical scanning system: Confirms normal distribution 

➠One single model parameter ! 
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Conductivity Gradient Model Derivation 

Skin effect in rough surfaces is deduced from Maxwell‘s equations with time harmonic fields 

and location dependent conductivity σ(r): 

Using Maxwell-Ampere‘s Law:  , inserting Ohm‘s Law            

for µr = 1 yields: 

Even at  f = 100GHz, ωεr/c2 ≪ µ0 σ, if σ ≫ 5.6S/m, so displacement current density can be 

neglected for σ down to ≈1ppm of copper conductivity: 

Taking the curl, ∇× : 

we get 

which, with Faraday‘s Law 

results in:  
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Skin Effect in Rough Surfaces 

• Assume gradual transition to bulk conductivity perpendicular to the mean surface  

‣ Focus on one-dimensional problem 

✦ The gradient model 

• Not only delivers a correction factor 

✦ Describes skin-effect in rough surfaces as a  

whole by one parameter: RMS-roughness Rq 

• Calculates profiles of magnetic field strength  

and loss power density for a given 

roughness distribution 

✦ Skin effect in ideally smooth surface: 

✦ Magnetic field abruptly starts to decline 

✦ Gradient model for skin effect in rough surface: 

✦ Magnetic field smoothly decreases 

as it enters the range of surface roughness 

 

10GHz 
1GHz 

100GHz 

           conductivity profile due to roughness 

          |B| smooth surface 

          |B| rough surface 
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Concept of Effective Conductivity 

✦ Comparison of loss power densities: Gradient Model vs. conventional skin 

effect 

✦ Effective conductivity is defined as the conductivity of a material with ideally 

smooth surface that would cause the same loss as the rough surface 
frequency dependent effective conductivity 

σeff (f) 
Prough (x)dx  Psmooth (x)dx
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Direct Measurement of the  

Effective Conductivity 

✦ Cylindrical cavity resonator operated at ≈ 10, 15, 21GHz (H01x modes) 

✦ Electrical field  has circular component Eφ only 

✦ Exchangeable lids of different surface roughness Rq 

✦ Influence of surface roughness measurable by quality factor Q 

✦ Treating rough surfaces as if they were ideally smooth yields σeff 



G. Gold, K. Helmreich 13 

Direct Measurement of the  

Effective Conductivity 

✦ RMS-roughness Rq of lids was obtained by optical scanning system 

✦ Responses for σeff predicted by Gradient Model from Rq agree with 

measured σeff : 

H011 H012 H013 
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Application in Field Solvers as  

Impedance Boundary Condition 

Advantages of impedance boundary conditions: 

✦Not necessary to mesh inside the conductor 

✦No increase of computation time  

✦Impedance boundary condition with                projects field phenomena  
in the conductor to its surface 

➡Modification: σ → σeff (f), δ → δ(σeff) ! 

Zs 
1 i
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Application in Field Solvers as  

Impedance Boundary Condition 
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Conclusion 

✦ Surface roughness is modeled as a conductivity gradient σ(x) 

‣ σ(x) is proportional to the CDF of the surface roughness profile 

‣ Single parameter model: Rq 

‣ Rq measurable with optical scanning system or microsection 

‣ Datasheets often provide values for Rq  

✦ Frequency dependent effective conductivity σeff 

‣ Derived from comparison to loss power density of smooth surface 

‣ Surface impedance as boundary condition 

‣ Easily applicable with commercial field solvers: import once to library 

‣ No increase of computation time 


