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Abstract 

Surface roughness of copper can more than double conductor power losses in high speed serial 

interconnects.  Empirical models of copper roughness are not accurate enough for data rates > 5 

Gbps to ensure signal integrity.  An electromagnetic model has been developed using a rigorous 

application of Maxwell’s equations, based on observed copper surface texture.  This model 

accurately describes attenuation and dispersion of signals, and its correlation has been confirmed 

through simulations and measurements up to 50 GHz.  One conclusion of this model is that the 

conventional description of RMS surface roughness is misleading, yielding inaccurate 

predictions and misinterpretations of how currents flow on interconnects. 
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Background:  In 1949 Samuel Morgani published the first study on conductor surface roughness 
losses using a numerical solution to 1% accuracy for Maxwell’s equations using a 2-D surface 
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distortion model.  He determined that, at 10 GHz, current flow transverse to periodic structures 
could increase loss by up to 100%!  If the current flow was parallel, the losses increased by up to 
33%.  Morgan hypothesized the cause for this additional loss was based on the assumption that 
the loss was a function of the RMS distortion of a rough surface relative to the electromagnetic 
skin depth, δ, of a perfectly smooth metal surface with conductivity equal to that of the bulk 
metal.  He studied two-dimensional cases that assumed the roughness consisted of infinitely long 
grooves parallel or normal to the current flow. Three geometrical shapes studied by Morgan were 
square, rectangular, and equilateral triangle grooves. The power loss of the rough surface, Prough, 
relative to that of a smooth surface, Psmooth is shown plotted in figure 1 as a function of RMS 
deviation / Skin Depth (∆/δ).  The Morgan analysis was conducted before the advent of 
computers so we must be in awe of a researcher who, with his “computer” (Miss J. G. Asbury - 
who performed the calculations by hand) would persist to numerically calculate a solution to 
Maxwell’s equations to 1% precision. 

  
 

Figure 1.  Samuel Morgan’s 2-D relative power loss calculations for rectangular (□), triangular 
(∆), and square (■) grooves that are normal to the direction of current flow in a transmission line.  
Morgan’s equilateral triangular distortion perpendicular to the direction of current flow (arrows) 
is shown in the graphic on the left. 

 

Superimposed on the Morgan data is an empirical fit (solid line) of an arctangent function that 
Hammerstad postulatedii in 1975 and publishediii in 1980. 
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The Hammerstad empirical fit to the Morgan data ignored the losses due to parallel grooves and 

the inverse tangent function had no physical basis.  The empirical function (1) is seen to produce 

a maximum value of 2 for the ratio of rough to smooth power loss.   
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It is surprising that data obtained by a numerical solution (before the age of digital computers) to 

a 2-D quasi-static form of Maxwell’s equations and an empirical fit to that data is still the basis 

of surface roughness power losses in some numerical field solvers.  It is even more surprising, 

given that the empirical fit given by equation (1), in association with an analysis of the losses 

caused by the dielectric propagating medium, falls far short of the insertion loss measurediv by a 

vector network analyzer (VNA) at frequencies above 5 GHz for microstrip or striplines in many 

different materials (FR-4, Isola, Rogers, Nelco). 

The absorption by fields propagating in a dielectric material has been studied by this group and 

reported in various presentations and publicationsv,vi,vii .  We have shown that absorption by the 

propagating medium (“dielectric loss”) accounts for about half of the loss; i.e. the total power 

loss for a 7 inch high-profile trace on a composite low-loss resin with a glass fiber weave 

microstrip is only 18 dB at 50 GHz (the total power loss for a 7 inch low-profile trace on a 

composite low-loss resin is only 15 dB).  Figure 2 shows the measured insertion loss (blue curve) 

for a 7 inch long high profile surface texture microstrip with an FR-4 propagating mediumviii. 

 

Figure 2. The measured insertion loss data for an isolated 7 inch long transmission line with an 

FR-4 propagating medium is shown in blue plotted as a function of frequency between 1-50 

GHz.  The solid green curve (above the data) is a fit of the Djordjevic model for FR-4 dielectric 

losses combined with the Hammerstad empirical fit surface roughness loss of equation 1. 



5 

 

In figure 2 it is seen that the measured data is approximately in agreement with the Djordjevic 

dielectric loss and Hammerstad rough surface empirical fit loss only in the regime between 0 and 

5 GHz.  For frequencies above 10 GHz the inconsistency between the measured data and the 

Hammerstad empirical fit is unacceptably large.  The absorption peak at about 35 GHz is 

discussed in other publicationsviii. 

Misunderstanding of Current flow and Power Loss:  Graphics like figure 1 can lead to a 

misunderstanding of surface current flow at the conductor / dielectric interface for a transmission 

line.  For example, we show a signal pulse in profile as it propagates down a transmission line 

with an equilateral triangle surface distortion in figure 3.  In all of the following graphs, a color 

convention of red is used for scalar potential, charge, charge density, and electric field intensity 

while blue is used for current, current density, and magnetic field intensity. 

 

Figure 3.  Snapshot of a signal voltage pulse (and corresponding electric field intensity) as it 

propagates in a transmission line with an equilateral triangle tooth structure. 

The propagation of electric field intensity, 0
ˆ  

x
aE E=

r
, at a phase velocity of ˆ  

p z r
u a c ε=
r

along 

the transmission line (in the z-direction) requires a surface charge density, Σ, on the copper 

surface to satisfy Gauss’s Law.  Since the local electric field intensity near a copper surface must 

be normal to the surface, the surface charge density on the equilateral triangle tooth must move 
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along the conductor profile at a speed c if the electric field intensity propagates in the FR-4 at 

speed c/2 for a relative permittivity of εr=4.  Note that for a lower relative permittivity or a 

steeper conductor profile the surface charge density speed exceeds c.  Because the fastest 

conduction electron is at the copper Fermi velocity, 61.5 10
F

v m s≈ × , one must ask, “How is 

the surface charge density velocity supported by local charge rearrangement?”, “Does one need 

to take into account space contraction for the propagating charge?”, “Can surface charge density 

propagate along a conductor at a speed that exceeds c?” and “If the current is travelling a longer 

path on a transmission line, why is the time of arrival not substantially lengthened for rough vs. 

flat surfaces?”  The answer is that local surface charge density is formed by the displacement of 

conduction electrons transverse to the surface profile so that a wave of charge density propagates 

at whatever speed is needed to support the external electric field intensity in the transmission 

line.  No charged particles actually move at relativistic speeds so we need not take into account 

space contraction.    

Some incorrect interpretations even suggest there is an exponentially declining current density 

profile moving along a flat conductor surface as shown in figure 4. 

 

2
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Figure 4.  Snapshot of a propagating signal electric field intensity and the incorrect model of 

surface current density, Jl, as it propagates inside a perfectly flat transmission line. 

The current density shown in figure 4 is often described as exponentially decreasing with the 

variable ξ as one proceeds into the conductor. A few models even integrate the current density 

between ξ=0 to ξ=∞ to show that a constant surface current to a depth of 1 δ  gives the same 

total conductor current with a conclusion that, “it is a valid approximation to assume that all the 
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current is flowing in an area confined by the conductor width and a single skin depth.”  

Unfortunately, this incorrect model results in a current loss analysis like that shown in figure 5. 

 

Figure 5. Example of an incorrect interpretation of the current path for a rough surface.  

By incorrectly viewing the current density profile into the good conductor by a distance, ξ, as an 

exponentially decaying current distribution and using an analysis that this current profile follows 

the surface features to produce an ohmic loss as it interacts with surface resistance leads to 

several illogical conclusions.  We must ask, “How does current density instantaneously appear as 

an exponentially decreasing function?”  “Have we suspended causality that requires a source and 

a time retarded response at distance ξ?”  “How does the current density flow around protrusions 

that are infinitely steep or double back?” “Would an isolated conducting material have no 

influence on power loss?” We conclude that neither the exponential current penetration nor the 

ohmic loss concept is correct! 

 

Field Propagation Concept:  As explainedviii in The Foundations of Signal Integrity, and shown 

in figure 6, the normal component of the local electric field intensity, E⊥

r
, does not penetrate a 

perfect electric conductor due to a surface charge density required by Gauss’s law but falls 

immediately to zero at the surface as would occur in a static field model.  Because the 

conduction electrons in a good conductor like copper can move at velocities sufficient to null 

free charges with a lifetime of 10-19 seconds, we can also say that copper quasi-statically nulls 

the normal component of the electric field intensity for frequencies below 1015 Hz.  The results 

of electromagnetic field penetration from a propagating medium like FR-4 into an adjacent good 

conductor behaves as shown in figure 6. 
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Figure 6.  Relative tangential magnetic and normal electric field intensity in the propagating 

medium (upper left) adjacent to a perfectly flat copper transmission line and the relative fraction 

of each that penetrates into the conductor.  Inside the copper is the cosinusoidally modulated 

exponential decay for a harmonic applied magnetic field intensity (solid line) and the induced 

tangential electric field intensity (that leads H
�

r
 in the conductor by 45º). 

The tangential electric field intensity at the conductor surface subsequently is continuous across 

the dielectric interface and induces a tangential electric field intensity, tanE
r

, back into the 

propagating medium as is shown in the lower left.  By contrast the local magnetic field intensity, 

H
�

r
, is tangent to and is continuous across the conductor surface with an exponentially 

decreasing magnitude as shown in figure 6.  It is important to note by the vector, 
p

u
r

, the 

magnetic field intensity propagates normally into a copper conductor at phase velocity 

0

22,804    at      1 GHz

ˆ ˆ ˆ7,211     at    10 GHz
2

2,280      at  100 GHzCu

p

c
c

a a cu a

c

ξ ξ ξωδ
σ ωε

 
 = = =  
  

r
                                            (2) 

which is much slower than the speed of propagation in the propagating medium even at high 

frequencies. Thus, by the time the magnetic field intensity has propagated a distance, ξ, into the 

copper conductor the inducing external magnetic field intensity in the propagating medium 

(travelling at speed c/2) has moved 1,140 times that distance along the transmission line even at 

a frequency of 100 GHz. We can also see that for a harmonic inducing magnetic field intensity 

the penetrating field will vary co-sinusoidally and change sign as it penetrates distance ξ into the 
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copper; the solid blue line shows negative penetrating fields beyond 2ξ δ π=  that were 

induced from an earlier time. Maxwell’s equations require an accompanying tangential electric 

field intensity inside the copper conductor that propagates with the same phase velocity, 
pp

u u= , 

but which leads the magnetic field intensity by 45º.  This is shown by the lower solid red curve 

in the Cu region; note the magnitude of the electric field intensity curve relative to the magnetic 

field intensity curve is frequency dependent and, in this case, is exaggerated to show the 

penetrating behavior. Finally we note that a boundary condition for tangential electric field 

intensity inside the conductor must be continuous across the dielectric boundary so that an 

additional electric field intensity, 2tan 0
ˆ

z Cu
aE E σ ωε=

r r
, appears in the dielectric due to the 

surface conductivity of the copper; the magnitude of this field is much smaller than the original 

inducing field, 0E
r

 and is out of phase with it by 45º.  The ratio tan HE
�

r r
is called the surface 

impedance (which we will use later) and depends on the square root of frequency.  This field also 

destroys the TEM nature of the propagating electromagnetic waves in the dielectric medium. 

 

Time Retarded fields and current densities in copper: Because a signal electric field intensity 

propagates at c2=c/√εr in the medium, it requires a surface charge density, Σes, on the adjacent 

conductor that must move with the electric field intensity in the z-direction at the same speed, c2.  

This moving surface charge density is a wave formed by the transverse displacement of the 

copper conduction electrons and the motion of the surface charge density constitutes a linear 

surface current density propagating in the z-direction as shown in figure 7. 

2,x
E

2,x
E

2,x
E

2,x
E

2 2,es x
EεΣ =

2
ˆes zl

J c aΣ=
r

 

Figure 7.   Snapshot of a harmonic electric and magnetic field intensity as it propagates in a 

medium and the penetration of the tangential magnetic component into the adjacent conductor.   

Shown on this graphic is the surface current density (just below the copper) and the induced 

magnetic field intensity that propagates slowly and decays exponentially into the conductor as 
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shown in figure 6.  Also shown in figure 7 is the consequential eddy current that occurs due to 

the electric field intensity internal to the conductor. Note that the induced current density in the 

conductor lags the surface current density at the signal wavefront due to the relatively slow 

propagation of fields into the conductor.  We might say that the propagating signal fields in the 

FR-4 medium leave “eddy currents” in their wake as they carry information between a 

transmitter and a receiver.  This model of current density flow in an adjacent conductor preserves 

causality.  

Rough Surfaces:  Real conductor surfaces are not perfectly flat.  Copper surfaces are 

intentionally manufactured to be rough in order to make them adhere to a dielectric propagating 

medium in a laminate stackup under temperature and pressure; a peel test is typically used to 

determine the quality of the adherence.  Figure 8 shows the degree of surface roughness in four 

different scanning electron microscope magnifications of a six layer high profile layer printed 

circuit board manufactured for this research.  Etched microstrips (top and bottom), embedded 

fiberglass bundles, a resin solder mask, and several impurities can be seen in the photographs. 

(a)
 

Figure 8.  Four scanning electron microphotographs of a six layer, high profile, rough copper, 
FR-4 printed circuit board with embedded fiberglass bundles, a resin solder mask, and several 
impurities.  Photo (d) shows a 10 µm bar in red for reference. 
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Because the magnetic and electric field intensity propagates into copper relative to the skin 
depth, δ, we note that 

( )
2.1      at       1 GHz

0.66     at     10 GHz

0.21     at   100 GHz

m

m

m

µ

δ ω µ

µ

 
 =  
  

       (3) 

Thus, the skin depth at 1 GHz is comparable to some of the surface irregularities on the 
underside of the copper trace while at 100 GHz it is much smaller as is shown in detail below. 

 

Rough Surface Manufacturing Process:  A typical copper foil manufacturing process is shown 
in figure 9. 

 
 

Figure 9.  a. Purification of copper in a CuSO4 solution. b. electrodeposition of copper onto a 
rotating titanium drum. c. Subsequent chemical processes that add copper nodules, protect the 
copper surface from tarnishing, make the surface resistant to Br contained in typical FR-4, and 
other proprietary surface treatments.  Bottom photographs are SEM images of the drum side and 
CuSO4 side of the copper foil surface before and after chemical treatment. 

 

The process permits the custom manufacture of very smooth or very rough copper surfaces for 
different applications.  However, the after treatment copper foils that are used in PCBs typically 
have a nodule texture as shown in figures 10 and 11. 
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Figure 10.  Scanning electron microscope photographs taken at a 32º angle of incidence for a 
high profile and low profile structure.  The white bars in the lower right corner of each photo are 
2 µm long. 

 

In figure 10 we see the high profile samples resemble copper nodule pyramid structures arranged 
in a nominal hexagonal pattern on a matte finish surface.  By comparison, the low profile 
samples appear to be made up of similar size copper nodules randomly scattered on a flat plane; 
the nodules vary in radius but the average size is about 1 µm in diameter. 

 

 
Figure 11. Scanning electron microphotograph of another high profile surface relative to skin 
depth δ at 1 GHz, 10 GHz, and 100 GHz. 

 

From figure 11 we can see that the anchor nodules that appear as a pyramid stack have a number 

of nooks and crannies that can grasp heated FR-4 resin under pressure to provide good physical 
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adherence.  Other features of the stackup are that the nodules themselves are possibly made up of 

very small kernels that form together in clumps like “snowballs.”  Many former studies of voids 

in the pyramidal stack-up, average density of the surface copper compared to solid copper, and 

electrical resistivity of the surface material, are consistent with this construction.  Clearly, it will 

be difficult, if not impossible, for any “simple” 2 dimensional analysis or model to properly 

represent the complex nature of the surface. 

In addition, we have made Auger measurements to determine the chemical composition of the 
surface “snowballs” and have found an exponential change from brass (CuZn) to pure copper 
with a depth of about 200 nm and small concentrations of C, O, Si and Ni. These elements are 
intentionally added in the manufacturing process (Figure 9); Zn to protect the copper surface 
from oxidation, Si to protect the Zn from Br in the FR-4, and other subtle negative chemical 
effects.  The electrical importance of the additions is that they cause a snowball surface film with 
lower conductivity and isolate the surface charge on individual snowballs from one another. 

 

Measurements of the physical extent of the snowball pyramids have also been made with the 
help of a laser profilometer as shown in figure 12. 

 

 

Figure 12.  Laser profilometer measurement of a high profile copper surface used in insertion 
loss measurements. Many similar scans led to an RMS profile of stack-ups with a tooth height of 
9.4 µm and a base width of 5.8 µm. 

 

If anything, the results of figure 12 show us the limitations of using a laser profilometer to 
determine the structure of a 3-D stack-up of copper material like that shown in figures 10 and 11.  
Because the size of the laser probe has a radius of about 2 µm, the tool is relatively blunt and 
shows only large features from an overhead perspective to a vertical resolution of 0.2 µm.  The 
stylus of a diamond tip profilometer typically has an even more blunt radius of up to 10 µm. 
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Non-uniform snowball model:  To describe the power loss more precisely and analytically, we 
have constructed a model of a snowball stack-up in which spheres of various radii, located at 
various distances below a flat plane act to absorb and scatter the electromagnetic waves that 
propagate under the rough surface of a transmission line as shown in figure 13. 

 
Figure 13.  Cross-Section of a stack-up of a number of non-uniform copper snowballs located 
distance xi below a flat surface to form a pyramid. 

 

When the ith copper sphere experiences an external electric and magnetic field intensity of a 

propagating TEM mode, it yields an electric dipole moment, 
i

p
r

, and a magnetic dipole moment, 

i
m
r

.  The field at point P due to the constructive interference of the propagating fields and the 

scattering and absorption of the ith copper sphere can be calculated by a partial wave analysis as 
was donex in The Foundations of Signal Integrity to yield an effective cross-section for scattering 
and for absorption.  If the position of each snowball was known, it would be possible, in 
principle, to calculate the field intensities at point P due to all of the spheres on the surface and to 
evaluate the amount of power that is lost from the propagating TEM fields due to the rough 
surface.  Such an exact calculation is not possible so many approximations have been made in 
approximating the fields at point P.  The Born approximation technique has been employed to 
make the analysis with second order effects neglected. The most important of these 
approximations is listed below.  Neglect of the: 

• Quadrupole and higher multipole moments in absorption and scattering. 

• Image fields due to the nearby conducting plane. 

• Screening fields due to nearest neighbor scattered fields. 

• Multiple scattering from 2 or more snowballs. 

• Bragg scattering from a periodic structures of snowballs. 

• Surface alloy on each snowball. 
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All of these secondary effects have been approximated and found to be less than 6% of the 1st 
order Born approximation componentsix.  The small amount of scattered and absorbed power due 
to snowballs on the ground plane are included in the number under the trace. For comparison to 
the measured power losses, we have further assumed that the collection of non-uniform sphere 
radii can be approximated by using n copies of the average uniform sphere; this assumption is 
somewhat self compensating in a 1st order approximation. 

 

Uniform snowball model:  Having little information about the distribution of snowball radii, the 
uniform average size has been chosen as a first approximation to see how well the power loss 
calculation works.  As we have observed, the pyramid stack-ups occur in a more or less 
hexagonal form on the conductor surface.  Since this is consistent with a hexagonal close 
packing for copper atoms on a surface and since the hexagonal geometry fills a flat area 
completely, we choose this structure for our analysis as shown in figure 14.   

                     
Figure 14.  Left- Eleven 1 µm radius snowballs stacked into three layers on hexagonal cells with 
a height of about 5.8µm.  Right- Thirty Eight 1 µm radius snowballs stacked into three layers on 
hexagonal cells.  Both schemes have a base dimension of 9.4 µm. 

 

The hexagonal geometry choice has no bearing on the final power loss calculation but it gives us 
a basis to find the lower and upper limits for average size snowballs that fill the area and look 
something like the SEM photographs in figure 10 and 11.  We can see from figure 14 that three 
levels of snowballs of radius are required to make a height of about 5.8 µm, that 11 spheres per 
hexagonal cell is too few to fill the area, and that 38 spheres per hexagonal cell is too many to 
form a pyramid like that observed in figures 10 and 11.  Thus, in our analysis routines for the 
power lost, we would expect a number of uniform snowballs somewhere between these lower 
and upper limits.  A similar process can be used to find lower and upper limits for smaller radii 
spheres. 

 

First Principles Power Loss:  To evaluate the power loss for an interconnect we employ the 
Born Approximation technique in which a sequence of perturbations of higher order are 
calculated for propagating electromagnetic fields.  In principle, the technique would require an 
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infinite number of calculations but we can estimate the influence of each perturbation to find the 
percentage change.  When the perturbation change is comparable to other neglected effects the 
process is terminated and each contribution evaluated.  In the process the dielectric losses are 
considered independently from the losses due to conductor losses.  We begin with the 0th order 
Born approximation as shown in figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  0th order Born approximation for the E
r

fields associated with a lumped signal as it 
propagates in a microstrip transmission line.  The dielectric medium is assumed to be perfectly 
homogeneous and the conductors are assumed to be perfectly flat. 

 

In the 0th order Born approximation the electric field intensity caused by a signal pulse is taken to 
be in the x-direction, and the magnetic field intensity is taken to be in the y-direction as they 
propagate in the z-direction.  The 1st order Born approximation is then the absorption and 
scattering that occurs when a single snowball is placed in the path of propagation as shown in 
figure 16. 
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Figure 16.  Side view of a microstrip transmission line with a spherical conductor perturbation 
as an incident TEM electromagnetic wave propagates in the z-direction.  The power scattered 
from the conducting sphere is shown as an outgoing wave.  The power absorbed by the sphere 
would be represented by an incoming wave (not shown in this graphic to preserve clarity). 

 

In the 1st
 Born approximation we take incident plane waves to be of the form 
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to calculate the average scattered power, 
sc

P∆ , and the average absorbed power, 
abs

P∆ , in 

terms of the average incident power density ( )1 2 Re
ininc nc i c

E H = × 
rr r

P in terms of a scattering 

cross section: 

 
absorbedabsorbed inc

scatter scattereded inc

P

P

σ

σ

∆ =

∆ =

r

r

P

P

        (5) 

These quantities are found by solving Maxwell’s equations in spherical coordinates  and 
applying tangential boundary conditions for a sphere required by surface impedance as discussed 
following figure 6.   The resulting fields that penetrate the good conducting sphere are shown in 
figure 17. 

 
Figure 17.  Rear view of the analytic solution to Maxwell’s equations for a propagating incident 
electric and magnetic field intensity wave as it interacts with a good conducting sphere. 

 

Cross sections for the 1st Born approximation have been foundx with the help of partial wave 
analysis that interprets incoming wave power as absorbed and outgoing wave power as scattered 
under the boundary condition required for tangential fields with a spherical surface impedance. 
Neglecting quadrupole and higher multipole terms the analysis gives: 
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We can observe from equations 6 that for high frequencies where the skin depth, δ(ω), is small 
compared to a snow-ball radius, ai, the cross section for scattering is the same as the classic 
power radiated by Rayleigh scatteringxi (ω4

ai
6).  At frequencies where the skin depth, δ(ω), is 

small compared to a snow-ball radius, ai, the cross section for absorption behaves as (3πk2ai
2δ).  

The frequency dependence of these scattering cross sections are shown in figure 18. 

 

 

Figure 18.  Values of the absorbed and scattered cross sections of a copper sphere (relative to 
their geometric cross section) as a function of frequency. 

 

From figure 18 we can see that for conducting spheres of radii ai=0.2 µm, ai=0.5 µm, or  ai=1.0 

µm and frequencies below about 10 THz the cross section for absorption is larger than the cross 
section for scattering and below 100 GHz, we can ignore the scattered power. 

 

Application to multiple snowballs:  As we noted in figure 13, we can model the rough surface 
pyramidal stack ups of copper “snowballs” to first approximation as a collection of Ni spheres, 
each of radius ai.  Using the absorption cross section for high frequencies (3πk2ai

2δ) we can then 
compute the maximum power absorbed by the stack up of the spheres as: 
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Equation 8 is important because it shows that the maximum power lost at high frequencies where 
the skin depth, δ(ω), is small compared to a snow-ball radius, ai, is unlimited, depending only on 
the area of all of the “snowballs” or “anchor nodules” on a hexagonal area relative to the flat 
copper surface area upon which they sit.  The power lost in this model is independent of RMS 
deviation of the snowball stack up height or the RMS surface roughness! 

 

Comparison with measured power loss:  Using equations 6 we can calculate the power loss for 
a stack up of different size snowballs on a flat surface as a function of frequency as: 
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Design engineers at Intel call this the special form of the Huray equation for a flat surface (non-
Matte finish) substrate; it replaces the Hammerstad equation (1) as a predictor of the conductor 
power loss into a textured surface. 

 

Measurements of surface roughness copper microstrip and striplines of various lengths have been 
made with different dielectric media (FR-4, Isola, Rogers, Nelco) to test the validity of the Huray 
equation.  VNA insertion loss measurements for a 7 inch high profile trace are shown in figure 
19 as a function of frequency up to 50 GHz: 

 
Figure 19.  Comparison of VNA insertion loss measurements for a 7 inch high profile (12 µm 
rms deviation) microstrip and the predictions of the Huray model with 79 uniform spheres of 
radius 0.5 µm as a function of frequency. 
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For a contrasting comparison we show in figure 20 the results of a low profile surface roughness 
for a 7 inch microstrip. 

 
Figure 20.  Comparison of VNA insertion loss measurements for a 7 inch low profile (4 µm rms 
deviation) microstrip and the predictions of the Huray model with 50 uniform spheres of uniform 
spheres of radius 0.5 µm as a function of frequency. 

 

We can see from these two comparisons that the insertion power loss for both high and low 
profile surface roughness is large and that the Huray model accurately predicts the loss with 
frequency up to 50 GHz without any reference to RMS deviation! 

 

2
nd

 Order Born Approximations
xii

:  The Huray model profits from several instances of 
serendipity for frequencies below 100 GHz:  In a partial wave analysis the absorbed power 
calculated right at the nodule’s surface gives the same power as the asymptotic answer.  The 
absorption cross section is very small compared to geometricxiii so that we can sum over groups 
of nodules without regard for their surroundings.  The scattered power can be neglected and thus 
the asymptotic partial wave analysis does not require secondary fields scattered from 
neighboring nodules; screening by neighboring nodules is small enough to ignore to first order.  
The low conductivity of the nodule surface electrically isolates them from one another.   The 
influence of surface coating on power loss is small compared to the loss due to the remaining 
copper.  Quadrupole and higher multipole moments produce less than 1% of the power loss due 
to dipole moments.  Image dipoles caused by a nearby smooth conducting plane lowers the total 
loss of an isolated snowball that absorbs and scatters. 
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Conclusions:  The relative power loss for a rough surface constructed by adding anchor nodules 
to a flat copper foil can be accurately calculated using equation 9 with a set of uniform copper 
absorbing spheres of average radius equal to that of the observed “snowballs” in a pyramidal 
stack up.  By comparison, the failure of the Hammerstad empirical fit to describe this loss is 
shown in figure 21.    

 

Figure 21.  VNA measurements of insertion loss for a 7 inch long, high profile roughened 
microstrip with RMS deviation of 12 µm compared to: Left graph: An empirical Hammerstad fit 
that is based on the 1948 Morgan 2-D surface model that depends on the RMS surface roughness 
and Right graph:  A first principles analytic absorption and scattering Huray model that depends 
only on the relative area of the extra “snowballs” and a dipole scattering dependence. 

 

It is probably serendipity that permits a compensation of pre-treated copper foils as flat even if 
the after-treatment nodules are deposited on a non-flat Matte surface.  If we correct the relative 
power loss equation 9 for this additional area we should replace the term 1 with the ratio of the 
average Matte area  perturbation to a flat hexagonal area: 
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This is the general form of the Huray equation (including a non-flat Matte finish) and it should 
be valid for a large category of surface textures and for frequencies up to 100 GHz.  It replaces 
the Hammerstad equation (1) as a predictor of the conductor power loss into a textured surface. 
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