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Abstract 
• Conductor roughness must be included in simulations of PCB designs at frequencies 

above a few gigahertz  - to accurately predict the insertion loss and delay time on the 

transmission lines.  

• An effective roughness dielectric (ERD) model can be used to substitute an 

inhomogeneous interface between copper foil and laminate dielectric in a PCB.  

• It is tempting to have an analytical model to predict ERD parameters. We provide a basis 

for such a model.  

• However, an empirical approach based on the matching between the measured and 

numerically modeled results has proven to be simpler and more efficient. Based on the 

extracted ERD parameters “design curves” have been built. 

• The verification using 3D full-wave numerical simulations of a set of stripline test vehicles 

has been done.  

• The parameters of an ambient laminate dielectric free of conductor roughness effects in 

the striplines are determined using differential extrapolation roughness measurement 

(DERM) technique.  

• The agreement of the 3D full-wave modeling results and measurements on multiple test 

structures validates the proposed approach.  
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S3 Technique to Extract DK & DF of a PCB Dielectric Substrate 
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• Analytical Models

• Numerical Models

• Experimental

Roughness characterization:  
A. Koul, M. 

Koledintseva et al,  

“Differential 

extrapolation method 

for separating dielectric 

and rough conductor 

losses in printed circuit 

boards”, IEEE Trans. 

Electromag. Compat., 

vol. 54, no. 2, Apr. 2012, 

pp. 421-433. 
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Copper Foil Types 
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Roughness Profile Analysis & Quantification 
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image
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Computer Vision – Roughness 

Quantification Part 

A Rakov, S. De et al “Quantification 

of conductor surface roughness 

profiles in printed circuit boards”, 

IEEE Trans. Electromag. Compat., 

DOI: 10.1109/TEMC.2014.2375274 , 

2014.  
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Roughness Profile Analysis & Quantification 

S. De, A.Y. Gafarov, M.Y. Koledintseva, R.J. Stanley, 

J.L. Drewniak, and S. Hinaga, “Semi-automatic 

copper foil surface roughness detection from PCB 

microsection images”, Proc. Int. IEEE Symp. 

Electromag. Compat., Pittsburgh, PA, Aug. 5-10, 

2012, pp. 132-137. 



Metallic Inclusions Concentration Variation with Height 
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Basis for Analytical Model Development 
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D. Marcuse, Theory of Dielectric Optical Waveguides 

(Optics and Photonics Series), Academic Press, 1991, 

Chapter 2.  



Geometrical Data of Test Vehicles 

w1, 
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1, 
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2, 
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QR1 QR2 Σ QR 

Group 

“BO” 

STD 337.9 343.2 16.44 712.8 308.0 286.0 0.85 6.20 25.0 14.2 0.034 0.44 0.474 

VLP 364.3 368.5 16.8 769 308.0 286.4 0.87 2.38 24.7 13 0.035 0.18 0.215 

HVLP 329.3 331.3 15.3 691.7 303.0 292.0 1.25 1.13 14.3 19.2 0.087 0.06 0.147 

Group 

“CZ” 

STD 326.2 338.2 15.9 885.7 289.8 282.5 1.47 6.19 20.6 17.3 0.073 0.359 0.432 

VLP 328.0 333.4 15.0 735.9 312.4 284.1 1.33 2.83 20.4 15.2 0.056 0.187 0.252 

HVLP 323.7 322.2 14.9 690.7 311.5 296.3 1.81 1.26 14.7 26.7 0.124 0.047 0.171 

Group 

“MB” 

STD 328.1 334.2 15.7 864.6 308.0 286.0 1.32 6.13 25.3 17.2 0.052 0.359 0.412 

VLP 329.5 331.2 15.4 735.8 313.7 282.5 1.04 3.01 19.9 15.8 0.053 0.191 0.244 

HVLP 340.0 342.4 15.0 706.6 311.0 297.3 1.30 1.04 16.9 20.7 0.077 0.050 0.128 
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Raw Measured Insertion Loss and Group Delay (“BO” Group) 
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Dielectric Loss Extraction Using DERM 
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Dielectric Phase Constant Extraction Using DERM 
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Refined from Conductor Roughness DK & DF of PCB 

Laminate Dielectric (Megtron 6) 

15 



ERD Dielectric Extraction Procedure 
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2D-FEM Model to Extract ERD Parameters 
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Modeled & Measured S-parameters for ERD Extraction 
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Scatter Plots for DK, DF, and VR of Roughness Layers 
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Validation by Full-wave 3D Numerical Modeling 

CST Studio Suite 3D (Full-wave FD MoM) model is used for validation of 

the extracted ERD data 

T. Vincent, M. Koledintseva, A. Ciccomancini, and S. Hinaga, “Effective roughness 

dielectric in a PCB: measurement and full-wave simulation verification”, IEEE Symp. 

Electromag. Compat., Raleigh, NC, 3-8 Aug. 2014, pp. 798-802. 
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Insertion Loss Agreement Validation 
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Phase Agreement Validation 
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Validation for Different Line Lengths 
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Power Dissipation Analysis 
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Design Curves for Effective Roughness Dielectric 
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Conclusions 

• To model PCB designs, it is important to know the geometry of a transmission line, the 

correct roughness-independent DK and DF data of the laminate dielectric substrate used 

in this line, and a type of a foil.  

• The parameters of a laminate dielectric substrate used in the modeling are determined 

using differential extrapolation roughness measurement technique (DERM).  

• The effective roughness dielectric (ERD) approach to represent foil surface roughness in 

a PCB is validated using 3D full-wave simulations.  

• “Design curves” (nomograms) to model roughness layers have been developed based on 

the collected data points from testing multiple test vehicles with different foils.  

• If an electronics designer does not have possibilities of foil roughness inspection, e.g., 

using an SEM or optical microscopy cross-sectional analysis, the recommended “design 

curves”, or pre-computed values of complex permittivity and thickness of “roughness 

dielectrics” for the known types of foils may still be used in the numerical modeling. 
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Thank you! 
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