

Effects of Nearby Ground Vias on High Speed Single-ended and Differential Signals

Alma Jaze, IBM

ajaze@us.ibm.com

Bruce Archambeault, IBM

barch@us.ibm.com

Samuel Connor, IBM

UBM Tech

Single Ended Signals

- Location of 'ground' via can affect return current path
 - Cause noise between the planes which can couple to other vias and/or connector pins
 - Noise from external sources can couple onto signal vias affecting data quality

Differential Signal Vias

- 'Ground' vias nearby can cause asymmetries which convert intentional signal energy to common mode noise
 - Possible EMC issues
- Same amount of conversion from common mode to differential mode can cause data problems from external noise sources

Modeling Process

- Cavity resonance approach to find the effect between planes
 - Different distance to 'ground' via
- Capacitance from via barrel to via keep out
- Through and shorted vias
- S parameters for each block for multi layered problems
- Everything assembled for final circuit simulation

Breaking the Problem

Multilayer via transition geometry

Field mapping and current path identification

One Plane Pair: Via Networks

Single Ended Via Configuration One 'Ground' Via

-- Spacing between planes varied

-- Distance between vias varied

Dielectric, Metal Thickness, 4.3 mil, 1mil Antipad, Pad, Via Drill Diameter: 35 mil, 20mil, 12 mil

Amount of Energy Transfer to Cavity 10mils between planes- 1GND Via location varies in the y direction (No GND case is shown by the black dotted line)

Effect of Positive & Negative Reinforcement Due to Multi-Path

Maximum Noise Reduction

Vs. Distance and Frequency

Noise Reduction in Cavity 10mil Dielectric Thickness

Noise Reduction in Cavity 35mil Dielectric Thickness

Single Ended Via Configuration Two 'Ground' Vias

D1 set to 50, 100, 150, 200 mils

Amount of EMI Noise in Cavity 10mils between planes - 2 GND Vias

Maximum Frequency of Benefit Vs. Distance

Differential Via Configuration

One 'Ground' Via

Dielectric Constant, Metal Thickness: 4.3, 1mil Antipad, Pad, Via Drill Diameter: 35 mil, 20mil, 12 mil

Noise Between Planes Due to Asymmetrical GND @ 100 mils

The effect of asymmetric GND configuration on the Transfer Function (GND via located 100 mils)

Noise Between Planes Due to Asymmetry and Various Distances

-40 -50

Differential Via Configuration

Two 'Ground' Vias

Noise Between Planes Due to Asymmetrical GND @ 80mils

Noise Between Planes Due to Asymmetry and Various Distances

Maximum Impact of Symmetry for Various Distances

The effect of the asymmetry on the transfer function Amp = TF amp at worst case sym. - TF amp at best case sym

Maximum Impact of Symmetry vs. Distance for Various Frequencies

Change in TF while comparing symmetrical and asymmetrical configurations vs. distance of GND vias from the center of config.

Dielectric thickness effect on the common mode noise GND1 and GND2 are located at r1=r2=60mil - <u>Worst case</u> Symmetry

GND1 at 90deg/100mil - GND2 and GND3 at various locations Transfer Function: Differential Port to Cavity Port

Differential Via Configuration Two 'Ground' Vias

Differential to Common Mode Conversion S_{cd21}

TOP VIEW

Effect of Asymmetry on S_{cd21} at 60 mil & 400 mil Distance to GND Vias

Effect of Asymmetry on S_{cd21} at Various Distance to GND Vias

Effect of Asymmetry on S_{cd21} at Various Frequencies

Common Mode Conversion: Scd21 GND1@90deg/60mil, GND2@60mil

Common Mode Conversion: Scd21 GND1@90deg/400mil, GND2@400mil

Maximum Impact of Asymmetry

- For a given distance, all frequencies have same impact vs symmetry
 - Biggest maximum impact possible with good symmetry
 - Maximum impact is frequency independent

Maximum Impact of Asymmetry Change in S_{cd21}

Change in Mode Conversion Scd21 Difference in Sd21 amplitude between worst and best case %Symm GND 1 @ 90deg/60mil - GND2 @ 60mil (angular location defines symmetry percentage)

Maximum Impact of Symmetry vs Distance to GND vias and Frequency

Change in Scd21 as a function of symmetry

Differential Via Configuration Two 'Ground' Vias

Differential to Common Mode Conversion Scd21

 Mode conversion is additive for each planepair transition

Mode Conversion for Poor and Good Symmetry for Multiple Plane-Pairs

Scd21: Common Mode Conversion GND1 at 90deg/100mil - GND2 at 269.5deg/100 mil (99.7%Symmetry)

Mode Conversion for Poor and Good Symmetry for Multiple Plane-Pairs for Various Frequencies

Summary

- Single Ended Via
 - Effect of distance to GND via characterized
- Differential Via
 - Effect of symmetry shown to be very important
 - Noise between planes
 - Mode conversion
 - Multiple vias
 - Important for BOTH emissions and Immunity

