

Introduction

What is EMC/EMI?

Part of Electrical Science to prevent the cause of EMI among products

Semi-Anechoic Chamber

DESIGNCON[®] 2013

Challenge

1. In EMC Design

- Little involvement during design phase
- Relies on experience, rule of thumbs, shielding
 - Works @ low-frequency (up to 1 GHz)
 - More 'Accidental Antennas' at high-frequency (5 GHz +)
- Not enough EMC research at high frequency
- EM simulation methodology is not mature yet
- Impossible to predict the 'Absolute EMI' on system level

2. In EMC Test

- System level, done towards the end of design cycle
- 'Band-Aid' fixes (expensive & not leveraged)
- Component level test difficult to do in Anechoic Chambers

- Target the 'Usual Suspects' (components) on PCB
- > Design via simulations & reduce EMI profiles (2 different numerical tools)
- Incorporate additional 'Hooks' to reduce EMI
- Validate design in the Reverberation Chamber

<section-header><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block>

DESIGNCON[®] 2013

Reverberation Chamber

Advantages of RC

- 1. Isolation of TX and RX Chamber (100 dB).
- 2. Feasibility to analyze individual components.
- 3. Easy and cost effective setup than anechoic chamber.
- 4. Fast and accurate measurements compared to anechoic chamber.
- 5. Excellent repeatability and predictability.

DESIGNCON[®] 2013

Innovation

Novel Simulation Technique to Duplicate RC Environment

- EM Source
 - > Angle of Incidences
 - Wave Polarizations
- Boundary Conditions
- Parameterization
 - Received Power
 - ≻ TRP
 - > SE

No other technique in literature is as comprehensive

Numerical Algorithm

<u>TRP</u> is the integral of Poynting Vector:

$$P = \frac{1}{2} \int_{S} real(E \times H) \cdot ds = \int_{S} real(S) \cdot ds$$

<u>SE</u> is the Ratio of TRP without the DUT (P_1) and the TRP with DUT in the center panel (P_2).

Case Validation

DESIGNCON[®] 2013

DESIGNCON[®] 2013

I/O Connector

Conclusion

- > Novel simulation method to predict the <u>TRP</u> and <u>SE</u> tested by RC.
- Validated by 4 different applications: <u>Heatsink with and without</u> <u>absorber</u>, <u>Air-vents</u>, <u>Chassis features</u> and <u>I/O connectors</u>.
- Results obtained by <u>HFSS</u> and <u>CST</u> agree well with test data in whole frequency range (1 - 40GHz).
- This simulation technique as well as the use of reverberation chamber is becoming an integral part of EMC design at Cisco.

DESIGNCON[®] 2013

Acknowledgment

Thank you !

San Jose Sr. Management:

William Swift (VP) , Dung Tran (Sr. Director)

CRDC EMC Engineer:

Hailong Zhang, Feng Ji, Quanhui Sun,

Jianquan Lou and Li Wan.

Q & A