Welcome to

25THANNIVERSARY **DESIGN CON® 2020** WHERE THE CHIP MEETS THE BOARD

Expo

Conference

January 28 - 30, 2020

January 29 - 30, 2020

Santa Clara Convention Center

#DesignCon

COM and Reference Transmitter/Receiver/Package for 106/112Gbps Long-Reach and Chip-to-Chip Links

Hsinho Wu, Masashi Shimanouchi, Mike Peng Li Intel Corp.

#DesignCon

Agenda

- Overview of serial link technologies at 106/112Gbps
- IEEE 802.3 106Gbps Ethernet and OIF CEI 112Gbps tasks
- Evolutions of SerDes electrical specifications and COM baseline model
- Observations and next steps

Overview of Serial Link Technologies for 106/112Gbps (KR/C2C)

Transition of SerDes and EQ architecture at 106/112Gbps

- \circ Analog-based \Rightarrow ADC-based
- DFE heavy \Rightarrow FFE heavy
- o FEC's impacts on BER gain/latency and dependency on EQ types/characteristics

Effectiveness of EQ schemes under PPA (Power, Performance, and Area) matrix*

- o PPA drives the choice of EQ schemes
- Analog performance is essential to ADC-based SerDes design
- o FFE is efficient in EQ performance and area
- $\circ~$ DFE is effective especially for the first few taps and under noisy conditions

Note: H. Wu, M. Shimanouchi, and M. Li, "Effective Link Equalizations using FIR, CTLE, FFE, DFE, and FEC for Serial Links at 112 Gbps and Beyond", DesignCon 2018, Santa Clara, CA.

IEEE 802.3 106Gbps Ethernet and OIF CEI 112Gbps

Standards	Data Rate & Modulation	Subclass	Applications
	106.25Gbps, PAM4	KR	Backplane (up to 2 connectors)
		CR	Cable
IEEE 802.3CK		C2C	Chip-to-Chip (up to 1 connectors)
		C2M	Chip-to-Module
	72Gbps-116Gbps, PAM4	LR	Long Reach
		MR	Medium Reach
OIF CEI 5.0		VSR	Very Short Reach
		XSR	Extra Short Reach

~2 years in working

Follows IEEE 802.3 50Gbps Ethernet and OIF CEI 56Gbps frameworks

- Divided into KR/CR/C2C/C2M (Ethernet) and LR/MR/VSR/XSR (OIF CEI) subclasses based on reaches and topology 0
- Use COM (Channel Operating Margin) Methodology for channel and device spec. settings and compliance tests
 - Exceptions: C2M and VSR/XSR subclasses

Will focus on IEEE 802.3ck KR/C2C and OIF CEI 5.0 LR/MR in this paper

Link performance is evaluated end-to-end at the slicer in the receiver

Evolutions of Electrical Spec. and COM Baseline Models

 COM is a figure of merit (FOM) which is a ratio between available signal amplitude and broad-sense noises, from uncompensated channel effects, crosstalk, device jitter and noise, and amplitude distortions

$$COM = 20 \times \log_{10}(\frac{A_s}{A_{ni}})$$

- COM methodology and its parameters bind the channels the standards can support and the assumed SerDes capabilities that can support the intended channels
- Due to the advancement of 106/112Gbps SerDes architectures, the phrase "assumed SerDes capabilities" became one of the major study and discussion points during 802.3ck and OIF CEI 5.0 development processes. For example:
 - $\circ~$ Do we need to develop COM for ADC-based SerDes architecture?
 - Will an ADC-based SerDes have same EQ capabilities as an analog-based SerDes, e.g. if they have the same amount of FFE/DFE taps?
 - What about FEC performance differences between ADC-based and analog-based SerDes'?

6

Evolutions of Electrical Spec. and COM Baseline Models Phase 1: What channel can be supported at 106/112Gbps? (~May 2018)

Initial 106/112Gbps channel data from Intel, Samtec, TEC

o Channel models with projected/scaled materials and connector characteristics

Initial reference device characteristics

- Scaled from 53/56Gbps: TX Rise/Fall time, TX/RX die capacitance (C_d), RX input noise (σ_0)
- Kept same with 53/56Gbps: Package (C_{ρ} , *T-line*), TX nonlinearity (*TX RLM*), noise (*SNR*_{TX})
- o Added/Modified 106/112Gbps SerDes features
 - Long FFE (12-28 taps) and short DFE (1 tap)
 - EQ adaptation using LMS-based algorithm

Findings

- o 106/112Gbps packages (C_d , 30mm T-line, and C_p) will consume >5dB insertion loss
- Reflections caused by the reference packages are at 22-23UI away from the main cursor location
- Determined that
 - Maximum channel insertion loss is ~28dB at 26.56/28GHz
 - ~24 post-taps are needed for ISI/reflection compensation

Evolutions of Electrical Spec. and COM Baseline Models **Phase 2:** Solution Space Differences? (~November 2018)

In Phase 1, an ADC-based SerDes is assumed. Questions:

- Not all 106/112Gbps SerDes' are ADC-based
- o FFE/DFE adaptation algorithms are implementation-dependent
- o Foresaw challenges in getting consensus regarding SerDes architecture and EQ adaptation methodology

Design Experiments with 3 receiver configurations

Config #	Name	SerDes Architecture	Description
Config 0	FFE-heavy/DFE-lite	ADC-based	Long FFE with 3 pre-taps and 12~28 taps post-taps plus 1-tap DFE
Config 1	DFE-only	Analog-based / COM Ref. RX	<i>12~28</i> -tap DFE
Config 2	FFE-lite/DFE-heavy	Hybrid of ADC-based and Analog-based	Lite FFE with 3 pre-taps and <i>no</i> post-taps plus 12~28- tap DFE

Note: TX is with 2 pre-taps and 1 post-tap

8

Evolutions of Electrical Spec. and COM Baseline Models Phase 2: Solution Space Differences? (cont.)

Config #	Name	SerDes Architecture
Config 0	FFE-heavy/DFE-lite	ADC-based
Config 1	DFE-only	Analog-based / COM Ref. RX

Mean Diff = 0.64dB (1.14dB for passing group) FFE-heavy/DFE (1-tap) (Config 0) outperforms

Config 1 underperforms Config 0

9

Evolutions of Electrical Spec. and COM Baseline Models Phase 2: Solution Space Differences? (cont.)

Evolutions of Electrical Spec. and COM Baseline Models Phase 2: Solution Space Differences? (cont.)

Comparisons among baseline ref. RX models

Config #	Baseline Ref. RX	Performance (w.r.t. <i>Config 0</i>)	Complexity	Notes
0	FFE-heavy (3-pre/n- post)/DFE (1-tap)	High	High 👎	Good performanceComplex COM model and standardization
1	DFE-only	Low 👎	Low	Low performanceUses existing COM methodology
2	FFE-lite (3-pre/0-post)/DFE- heavy (n-taps)	High 📕	Low/Medium	 Good Performance Use existing 802.3/OIF-CEI and COM methodology

January 28-30, 2020

Evolutions of Electrical Spec. and COM Baseline Models Phase 3: Can we use a DFE-only baseline receiver to emulate an ADC-based receiver? (~March 2018)

- Previous studies (*in Phase 2*) showed Config 2 (FFE-lite/DFE-heavy) approximated well with ADC-based SerDes but task force argued that:
 - o It did not resemble a "real" SerDes design
 - o It can potentially under-estimate the impact of noises
 - o Still needs to develop methodology for calculating RX FFE pre-tap coefficients
- Studies proposed to improve existing COM ref. receiver, i.e. DFE-only, to match ADCbased designs' performance
 - Add TX pre-tap 3 in COM's ref. TX
 - $\circ~$ Increase DFE coefficient limit, specifically tap 1, to 0.85 (from 0.75)

Evolutions of Electrical Spec. and COM Baseline Models Phase 3: Can we use a DFE-only baseline receiver to emulate an ADC-based receiver? (Cont.)

Config 1 w/ b_{max}(1)=0.85 and TX w/ 3 pre-taps matches better with Config 0

January 28-30, 2020

Evolutions of Electrical Spec. and COM Baseline Models Phase 3: Can we use a DFE-only baseline receiver to emulate an **ADC-based receiver?** (Cont.)

Original Config 2 is optimistic
w.r.t. Config 0

0 0.00%

11

6.47%

False Pass 5.29% 9 0.00% False Fail 0

	value	note
vlean Diff	0.81	
Sensitive Group Mean Diff	0.09	
alse Pass	6	3.32%
alse Fail	2	1.18%

Config 2 w/ $b_{max}(1)=0.5$ matches better with Config 0

False Pass

False Fail

Evolutions of Electrical Spec. and COM Baseline Models Phase 3: Can we use a DFE-only baseline receiver to emulate an ADC-based receiver? (Cont.)

Evolutions of Electrical Spec. and COM Baseline Models Phase 3: Can we use a DFE-only baseline receiver to emulate an ADCbased receiver? (Cont.)

Observations

- With improved package model, improved TX pre-tap 3, and extended DFE coefficient limit (0.85), DFE-only RX baseline model (Config 0) can approximate the performance of ADC-based SerDes design
- With improved package model, improved TX pre-tap 3, and restricted DFE coefficient limit (0.5), FFE-lite/DFEheavy RX baseline model (Config 2) can also approximate the performance of ADC-based SerDes design

802.3ck adopted DFE-only (Config 0) as COM RX baseline model

- o Good match to ADC-based SerDes performance in terms of channel coverage
- o Can reuse existing COM model for standards use

Evolutions of Electrical Spec. and COM Baseline Models **Phase 3:** *Improve backplane channel coverage with floating tap DFE* (~*July 2019*)

Issues

- Studies found many test channels requires >100 post taps to pass 3dB COM
- $_{\odot}$ Studies found that we do not need long consecutive EQ taps to pass 3dB COM

Studies/Actions

- o Narrow down the channel list and eliminate bad/legacy channels
- Use floating DFE taps

Summary of Latest 802.3ck and OIF CEI 5.0 Subclasses

Standards	Data Rate & Modulation	Subclass	Applications	
	106.25Gbps, PAM4	KR	Backplane (~28dB IL, up to 2 connectors)	
		CR	Cable (~28dB IL with ~2m cable)	
IEEE 802.3ck		C2C	Chip-to-Chip (~20dB IL, up to 1 connectors)	
		C2M	Chip-to-Module (~16dB IL between host and module)	
OIF CEI 5.0	72Gbps-116Gbps, PAM4	LR	Long Reach (similar to 802.3ck KR)	
		MR	Medium Reach (similar to 802.3ck C2C)	
		VSR	Very Short Reach (similar to 802.3 C2M)	
		XSR	Extra Short Reach (TBD)	

January 28–30, 2020

Observations and Next Steps

- SerDes technology is able to keep up with the increasing data rates. But
 - w/ cost of increasing complexity and power consumption.
- Packaging and channel are not able to scale with data rates due technologies and/or cost
 - o Usable channel insertion loss is reduced to ~28dB.

Channel characteristics becomes more challenging

o Drives up the complexity of equalization and subsequently drives up the power consumption.

COM baseline device specifications are de-coupled from actual SerDes architectures and designs

o COM baseline specifications just represent the capability of a SerDes

Burst error due to DFE is likely to be less than the COM baseline RX implied

 COM's DFE-only baseline receiver has tap 1 coefficient limit of 0.85. In ADC-based SerDes designs, where tap 1 ISI is to be compensated by TX FIR, RX FFE and RX DFE, DFE tap 1 coefficient will likely to be much lower.

TX FIR and RX FFE in ADC-based SerDes will reduce FEC performance

o Due to reduced SNR at receiver's slicer

Observations and Next Steps (cont.)

Burst errors caused by multi-tap DFE will be less likely to occur

- Because ADC-based SerDes designs usually have one or very few DFE taps.
- \circ $\,$ This will simplify FEC modeling and performance analysis.

Next Steps

- Need more theoretical researches and correlation studies in the interactions among TX FIR, FFE, DFE, and FEC
- HSIO industry and standard bodies need to start embracing ADC and FFE effects in the specification setting and compliance test methodologies

Thank you!

QUESTIONS?

