

# **100 GB/S ETHERNET - 100GBASE-CR4 TEST POINTS AND TEST FIXTURES**

UBM

# Authors

- Christopher DiMinico, PHY-SI LLC/MC Communications cdiminico@ieee.org
- Mike Resso, Keysight Technologies, mike\_resso@keysight.com,
- Mike Sapozhnikov, Cisco Systems, msapozhn@cisco.com



# IEEE 802.3bj - 100GBASE-CR4

- IEEE Standard for Ethernet Amendment 2: Physical Layer Specifications and Management Parameters for 100 Gb/s Operation Over Backplanes and Copper
- 100 Gb/s backplane and copper cable port type 100GBASE-CR4
- Passive twinaxial copper cable assemblies of lengths up to at least 5 meters
- Interconnection of switches and server's in equipment racks within the data center, computer room, and central office environments.



# Abstract

- Overview 100GBASE-CR4 test point specifications and test fixtures for testing;
  - transmitter and receiver signals
  - twinaxial copper cable assemblies
- Demonstration of achievability of conformance to the 100GBASE-CR4 test fixture s-parameter specifications;
  - HFSS models
  - vector network analyzer measurements



# **Channel and link Definitions**

- The channel is defined between the transmitter and receiver blocks to include the transmitter and receiver differential controlled impedance printed circuit board and the cable assembly.
- The Media dependent interfaces (MDIs) refer to the connector interfaces. 100GBASE-CR4 specifies the quad small form factor pluggable (QSFP28) plug and receptacle.



## **Test Points and Descriptions**

• For conformance testing five test points are standardized.

| Test Points | Description                                                    |
|-------------|----------------------------------------------------------------|
| TP0 to TP5  | The channel is defined between the transmitter and receiver    |
|             | blocks to include the transmitter and receiver differential    |
|             | controlled impedance printed circuit board and the cable       |
|             | assembly.                                                      |
| TP1 to TP4  | All cable assembly measurements between TP1 and TP4. are       |
|             | performed with the test fixtures specified in 100GBASE-CR4.    |
| TP0 to TP2  | A mated connector pair is included in both the transmitter and |
| TP3 to TP5  | receiver specifications.                                       |
| TP2         | Transmitter parameters are measured at TP2 utilizing the test  |
|             | fixture specified in 100GBASE-CR4.                             |
| TP3         | Receiver parameters are measured at TP3 utilizing the test     |
|             | fixture specified in 100GBASE-CR4.                             |



# **Channel Parameters and Insertion Loss Budgets**

- TP0 and TP5 may not be accessible in an implemented system
- Information (not required for conformance) of channel transmission characteristics and insertion loss budgets provided in Annex's.

| Parameter description                                                                                                     | f(GHz)    | Unit | Cable assembly                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------|-----------|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Transmitter and receiver differential printed circuit<br>board trace loss (host PCB insertion loss 6.81 dB<br>@12.89 GHz) | 0.05≤f≤19 | dB   | 1.17 dB<br>6.81 dB<br>Transmit<br>function<br>6.81 dB<br>Function                                                                            |
| Channel Insertion Loss (6.81 dB @12.89 GHz)                                                                               | 0.05≤f≤19 | dB   |                                                                                                                                              |
| Maximum channel insertion Loss (35 dB @12.89 GHz)                                                                         | 0.05≤f≤19 | dB   | TP0 9.85 dB TP2 TP3 9.85 dB TP5                                                                                                              |
| Minimum channel insertion loss (x dB @12.89 GHz)                                                                          | 0.05≤f≤19 | dB   | $4 22.48 \text{ dB} + (2 \times 9.85) - (2 \times 3.59) = 35 \text{ dB}$                                                                     |
| Channel operating margin (3 dB)                                                                                           |           | dB   | $ \begin{bmatrix} 1 & 1 & 1 & 3 & 4 \\ 0 & 0 & 0 & 1 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$ |

TP1

Insertion loss budget @ 12.89 GHz

3.59 dB Mated cable assembly and test point test fixture 22.48 dB

TP4



# The Channel Operating Margin (COM)

• A figure of merit for a channel derived from a measurement of its scattering parameters. COM is related to the ratio of a calculated signal amplitude to a calculated noise amplitude; channel operating margin (3 dB).



| Parameter                                                                                                                                                                                    | Symbol                                  | Value                                                        | Units                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|----------------------|
| Signaling rate                                                                                                                                                                               | Jo.                                     | 25.78125                                                     | GBd                  |
| Maximum start frequency                                                                                                                                                                      | finin                                   | 0.05                                                         | GHz                  |
| Maximum frequency step                                                                                                                                                                       | 4/                                      | 0.01                                                         | GHz                  |
| Device package model<br>Single-ended device capacitance<br>Travamision line length, Tot 1<br>Travamision line length, Tot 2<br>Single-ended package copociance at package-to-loard interface | C4 ==================================== | 2.5 × 10 <sup>-4</sup><br>12<br>30<br>1.8 × 10 <sup>-4</sup> | nF<br>mm<br>mm<br>nF |
| Single-ended reference resistance                                                                                                                                                            | R <sub>0</sub>                          | 50                                                           | Ω                    |
| Single-ended termination resistance                                                                                                                                                          | R <sub>d</sub>                          | 55                                                           | Ω                    |
| Receiver 3 dB bandwidth                                                                                                                                                                      | fr .                                    | 0.75×J <sub>b</sub>                                          | GHz                  |
| Transmitter equalizer, minimum cursor coefficient                                                                                                                                            | e(0)                                    | 0.62                                                         | -                    |
| Transmitter equalizer, pro-cursor coefficient<br>Minimum value<br>Maximum value<br>Step size                                                                                                 | c(-1)                                   | -0.18<br>0<br>0.02                                           |                      |
| Transmitter equalizer, post-oursor coefficient<br>Maximum value<br>Step size                                                                                                                 | c(1)                                    | -0.38<br>0<br>0.02                                           | -                    |
| Continuoua time filter, DC gain<br>Minimum value<br>Step size                                                                                                                                | gDC                                     | -12<br>0<br>1                                                | dB<br>dB<br>dB       |
| Continuous time filter, zero frequency                                                                                                                                                       | J <sub>2</sub>                          | <i>f</i> <sub>b</sub> /4                                     | GHz                  |
| Continuous time filter, pole frequencies                                                                                                                                                     | lai<br>Ja                               | f <sub>b</sub> /4<br>fb                                      | GHz                  |
| Transmitter differential peak output voltage<br>Votim<br>Far-end aggressor<br>Near-end aggressor                                                                                             | 4.40.2                                  | 0.4<br>0.4<br>0.6                                            | v<br>v               |
| Number of signal levels                                                                                                                                                                      | L                                       | 2                                                            | -                    |
| Level separation mismatch ratio                                                                                                                                                              | RIM                                     | 1                                                            | -                    |
| Transmitter signal-to-noise ratio                                                                                                                                                            | SNRTX                                   | 27                                                           | dB                   |
| Number of samples per unit interval                                                                                                                                                          | м                                       | 32                                                           | -                    |
| Decision feedback equalizer (DFE) length                                                                                                                                                     | NB                                      | 14                                                           | UI                   |
| Normalized DFE coefficient magnitude limit, for $n = 1$ to $N_b$                                                                                                                             | b <sub>max</sub> (n)                    | 1                                                            | -                    |
| Random jitter, RMS                                                                                                                                                                           | σ <sub>RJ</sub>                         | 0.01                                                         | UI                   |
| Dual-Dirac jitter, peak                                                                                                                                                                      | A <sub>DD</sub>                         | 0.05                                                         | UI                   |
| One-sided noise spectral density                                                                                                                                                             | ηο                                      | $5.2 \times 10^{-8}$                                         | V <sup>2</sup> /GHz  |
| Target detector error ratio                                                                                                                                                                  | DER                                     | 10 <sup>-5</sup>                                             | -                    |



## Transmitter and Receiver Parameters TP2/TP3

 The electrical transmit signals is defined at the output end of the mated connector (TP2) and all receiver measurements and tests are made at the input end of the mated connector (TP3).



| Parameter                                     | Subclause<br>reference | Value                          | Units |
|-----------------------------------------------|------------------------|--------------------------------|-------|
| Receiver input amplitude tolerance            | 92.8.4.1               | 1200 mV as measured at TP2     | mV    |
| Differential input return loss (min)          | 92.8.4.2               | Equation (92-20)               | dB    |
| Differential to common-mode input return loss | 92.8.4.3               | Equation (92-21)               | dB    |
| Interference Tolerance                        | 92.8.4.4               | Table 92–8                     | —     |
| Signaling rate, per lane                      | 92.8.4.6               | $25.78125 \pm 100 \text{ ppm}$ | GBd   |
| Unit interval (UI) nominal                    | 92.8.4.6               | 38.787879                      | ps    |

**Receiver characteristics at TP3 summary** 

| Parameter                                                                                                                                                                  | Subclause<br>reference                               | Value                       | Units          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------|----------------|
| Differential peak-to-peak output voltage (max.) with Tx disabled                                                                                                           | 92.8.3.1                                             | 35                          | mV             |
| DC common-mode voltage (max.)                                                                                                                                              | 92.8.3.1                                             | 1.9                         | v              |
| AC common-mode output voltage, v <sub>cmi</sub> (max., RMS)                                                                                                                | 92.8.3.1                                             | 30                          | mV             |
| Differential peak-to-peak voltage, v <sub>di</sub> (max.)                                                                                                                  | 92.8.3.1                                             | 1200                        | mV             |
| Differential output return loss (min.)                                                                                                                                     | 92.8.3.2                                             | See Equation (92-1)         | dB             |
| Common-mode to differential mode output return loss (min.)                                                                                                                 | 92.8.3.3                                             | See Equation (92-2)         | dB             |
| Common-mode to common-mode output return loss (min.)                                                                                                                       | 92.8.3.4                                             | See Equation (92-3)         | dB             |
| Transmitter steady-state voltage, $v_f(min.)$<br>Transmitter steady-state voltage, $v_f(max.)$                                                                             | 92.8.3.5.2                                           | 0.34<br>0.6                 | v              |
| Linear fit pulse peak (min.)                                                                                                                                               | 92.8.3.5.2                                           | $0.45 \times v_f$           | v              |
| Transmitted waveform<br>abs coefficient step size (min.)<br>abs coefficient step size (max.)<br>minimum precursor full-scale ratio<br>minimum post cursor full-scale ratio | 92.8.3.5.4<br>92.8.3.5.4<br>92.8.3.5.5<br>92.8.3.5.5 | 0.0083<br>0.05<br>1.54<br>4 |                |
| Signal-to-noise-and-distortion ratio (min.)                                                                                                                                | 92.8.3.7                                             | 26                          | dB             |
| Output jitter (max.)<br>Even-odd jitter, peak-to-peak<br>Effective bounded uncorrelated jitter, peak-to-peak<br>Effective total uncorrelated jitter, peak-to-peak          | 92.8.3.8.1<br>92.8.3.8.2<br>92.8.3.8.2               | 0.035<br>0.1<br>0.18        | UI<br>UI<br>UI |
| Signaling rate, per lane                                                                                                                                                   | 92.8.3.9                                             | 25.78125±100 ppm            | GBd            |
| Unit interval nominal                                                                                                                                                      | 92.8.3.9                                             | 38.787879                   | ps             |

Transmitter characteristics at TP2 summary



Source: IEEE 802.3bj

# Cable Assembly Characteristics TP1/TP4

• The twinaxial copper cable assembly consists of shielded signal pairs utilized for differential signaling at 25 Gb/s per differential signal pair.



| Parameter description                          | f(GHz)     | Unit |
|------------------------------------------------|------------|------|
| Maximum Insertion Loss (22.48 dB)              | @12.89 GHz | dB   |
| Minimum Insertion Loss (8 dB @ 12.89 GHz       | 0.05≤f≤19  | dB   |
| Minimum Return Loss                            | 0.05≤f≤19  | dB   |
| Differential to common-mode return loss        | 0.05≤f≤19  | dB   |
| Differential to common-mode conversion loss    | 0.05≤f≤19  | dB   |
| Common-mode to common –mode return loss        | 0.05≤f≤19  | dB   |
| Common-mode to common –mode return loss        | 0.05≤f≤19  | dB   |
| Cable assembly Channel Operating Margin (3 dB) |            | dB   |





# Cable Assembly Channel (COM)

• The cable assembly Channel Operating Margin (COM) for each victim signal path (receive lane) is derived from measurements of the cable assembly victim signal path, the four individual near-end crosstalk paths, and the three far-end crosstalk paths that can couple into a victim signal path.



Cable assembly signal paths and crosstalk paths for COM



# **Test Fixture Specifications**

- Test fixtures specified in a mated state used for testing the transmitter, the receiver and cable assembly measurements
  - The TP2/TP3 test fixture also known in the industry as Host Compliance Board (HCB) is required for measuring the transmitter specifications at TP2 and the receiver return loss at TP3.
  - The cable assembly test fixture also known in the industry as Module Compliance Board (MCB) is required for measuring the cable assembly specifications at TP1 and TP4.



### **Mated Test Fixtures Parameters**

| Parameter description                         | f(GHz)    | Unit |
|-----------------------------------------------|-----------|------|
| Maximum insertion Loss                        | 0.01≤f≤25 | dB   |
| Minimum Insertion Loss                        | 0.01≤f≤25 | dB   |
| Minimum Return Loss                           | 0.01≤f≤25 | dB   |
| Common-mode conversion insertion loss         | 0.01≤f≤25 | dB   |
| Common-mode return loss                       | 0.01≤f≤25 | dB   |
| Common-mode to differential –mode return loss | 0.01≤f≤25 | dB   |
| Integrated crosstalk noise                    |           |      |

#### Mated test fixtures parameters



| Description                                           | Symbol            | Value    | Units |
|-------------------------------------------------------|-------------------|----------|-------|
| Symbol rate                                           | ſъ                | 25.78125 | GBd   |
| Near-end disturber peak differential output amplitude | A <sub>nt</sub>   | 600      | mV    |
| Far-end disturber peak differential output amplitude  | $A_{\mathrm{ft}}$ | 600      | mV    |
| Near-end disturber 20% to 80% rise and fall times     | T <sub>nt</sub>   | 9.6      | ps    |
| Far-end disturber 20% to 80% rise and fall times      | T <sub>ft</sub>   | 9.6      | ps    |

#### Source: IEEE 802.3bj

#DC15

Integrated crosstalk noise (ICN)

DESIGNCON 2015

# **TP2/TP3 (HCB) HFSS Model**

• TP2/TP3 (HCB) test fixture insertion loss specification of 1.35 dB @12.89 GHz yields an insertion loss of approximately 0.3 dB/in @12.89 GHz.













DESIGNCON 2015















### **Test Fixtures**





Module compliance board (MCB) •Cable assembly test fixture •Module test fixture •TP1 to TP4 test fixture Host compliance board (HCB) •TP2 or TP3 Test Fixture



PHY-SI Mated test fixtures measured at University of New Hampshire Interoperability Test Lab (UNH-IOL)





FOM<sub>ILD</sub> is calculated according to 93A.4 with  $f_b$ =25.78125 GHz,  $T_t$ =9.6 ps, and  $f_r$ =0.75 ×  $f_b$ . The fitted insertion loss and insertion loss deviation are computed over the range  $f_{min}$ =0.01 GHz to  $f_{max}$ =25 GHz. FOM<sub>ILD</sub> shall be less than 0.13 dB.

| Lane | FOM <sub>ILD</sub> (dB) |
|------|-------------------------|
| TX1  | 0.075                   |
| TX2  | 0.045                   |
| TX3  | 0.039                   |
| TX4  | 0.044                   |
| RX1  | 0.067                   |
| RX2  | 0.046                   |
| RX3  | 0.042                   |
| RX4  | 0.053                   |













| Description                                           | Symbol          | Value    | Units |
|-------------------------------------------------------|-----------------|----------|-------|
| Symbol rate                                           | $f_b$           | 25.78125 | GBd   |
| Near-end disturber peak differential output amplitude | A <sub>nt</sub> | 600      | mV    |
| Far-end disturber peak differential output amplitude  | $A_{ft}$        | 600      | mV    |
| Near-end disturber 20% to 80% rise and fall times     | T <sub>nt</sub> | 9.6      | ps    |
| Far-end disturber 20% to 80% rise and fall times      | T <sub>ft</sub> | 9.6      | ps    |

| Parameter                                 | 100GBASE-CR4  | Units |
|-------------------------------------------|---------------|-------|
| MDNEXT integrated crosstalk noise voltage | less than 1.8 | mV    |
| MDFEXT integrated crosstalk noise voltage | less than 4.8 | mV    |

|                 | RX1  | RX2  | RX3  | RX4  |
|-----------------|------|------|------|------|
| MDNEXT ICN (mV) | 1.08 | 0.95 | 1.00 | 0.95 |
| MDFEXT ICN (mV) | 3.72 | 4.09 | 2.77 | 3.01 |

|                 | TX1  | TX2  | ТХ3  | TX4  |
|-----------------|------|------|------|------|
| MDNEXT ICN (mV) | 1.39 | 1.13 | 1.11 | 0.81 |
| MDFEXT ICN (mV) | 4.17 | 3.19 | 3.74 | 3.00 |

#DC15

DESIGNCON 2015 WHERE THE CHIP MEETS THE BOARD

# 2x Calibration Trace – Measurements

 Three revisions of the PHY-SI TP2/TP3 HCB test fixture improvements; transmission line structure, PCB materials, plating over copper, differential and ground trace geometries, ground plane stitching symmetry, proximity of solder mask to differential trace placement and tightly controlled PCB fabrication



# Automatic Fixture Removal (AFR) Software

 Viability of open ended test fixture measurements (i.e., tested in an unmated state) was explored using Keysight's physical layer test software (PLTS) automatic fixture removal (AFR) software.



# Summary

- Overview 100GBASE-CR4 test point specifications and test fixtures
- The achievability of meeting the 100GBASE-CR4 test fixture s-parameter specifications was demonstrated in HFSS models as well as by vector network analyzer measurements
- Test fixture measurement results were presented and compared to the sparameter specification limits.
- Revisions of the PHY-SI TP2/TP3 HCB test fixture design depicting insertion loss improvements based on design attributes were illustrated.
- Considerations for the viability of open ended test fixture measurements (i.e., tested in an unmated state) was explored using Keysight's physical layer test software (PLTS) automatic fixture removal (AFR) software.



# Acknowledgements

• The authors thank Curtis Donahue-University of New Hampshire Interoperability Test Lab (UNH-IOL) and Arnav Shah-Cisco Systems for the for the laboratory measurements and O.J. Danzy-Keysight Technologies for assistance with PLTS AFR.

