

Comparison of HFSS 11 and HFSS 12 for JSF Antenna Model

- UHF blade antenna on Joint Strike Fighter
- Inherent improvements in runtime and RAM usage for this example
 - Model converges to desired accuracy in 50% of the time using 20% less RAM

JSF Antenna Model (8 CPUs)	Adaptive Passes to Reach ∆S = 0.02	Tetrahedra	Runtime (min)	RAM (GB)
HFSS 11: 2 nd order basis and iterative solver	6	162k	98	9.1
HFSS 12: 2 nd order basis and iterative solver	6	119k	59	6.9
HFSS 12: mixed order basis and iterative solver	7	156k	47	7.6

(Option) DSO (Distributed Solve Option)

Balancing Time versus Resources **DSO (Distributed Solve Option)**

- In the past, users had to make trade-off decisions about how much to simulate in a limited amount of time (eg, overnight)
 - Multiple geometric variations
 - Pro: optimizes structure for best electrical performance
 - Con: requires more run-time
 - simulation time increases with # of variations
 - Solve for more frequency points
 - Pro: improves results accuracy
 - Con: requires more run-time
 - simulation time increases with # of freq. points

Reduce Simulation Run Times

- Trace width and spacing parameterization using Q3D
- Distributed Solve Option in action

Optimize Simulation Run Times

DSO Setup

- 25 Parametric Case
- HeadNode: Dual-Dual-Core AMD
 2.2GHz 16GB RAM
- Nodes: 16 Dual Processor AMD 2.6GHz 8GB RAM

Nominal Case

- 6 hrs 51 min

DSO Solution Time

- 26 min !!!

Time Savings

- 15x speed up !

I ∢ ∢ 1	>	Þ	Q3D I	Extractor	Ve	ers	ion 7.1.1 s	tarted on hea	dnode at 09-08-	2006 11:59:45	<u> </u>		
Variation	BFRD		BMR	H1			UR	WS	Start	Stop	Elapsed		Export
1	170um		180um	150um			100um	-7.5um	11:59:56	12:13:24	00:13:28		
2	170um		180um	125um			100um	-7.5um	11:59:51	12:13:29	00:13:38		Solver Profi
3	170um		180um	100um			100um	15um	11:59:48	12:13:40	00:13:52		
4	170um		180um	125um			100um	7.5um	11:59:54	12:13:49	00:13:55		
5	170um		180um	125um			100um	15um	11:59:53	12:13:58	00:14:05		
6	170um		180um	50um			100um	15um	12:00:03	12:14:06	00:14:03		
7	170um		180um	125um			100um	-15um	11:59:50	12:14:26	00:14:36		
8	170um		180um	150um			100um	-15um	11:59:55	12:14:33	00:14:38		
9	170um		180um	100um			100um	-7.5um	11:59:46	12:14:57	00:15:11		
10	170um		180um	150um			100um	Oum	11:59:57	12:15:04	00:15:07		
11	170um		180um	100um			100um	-15um	11:59:45	12:15:05	00:15:20		
12	170um		180um	100um			100um	Oum	11:59:47	12:15:06	00:15:19		
13	170um		180um	75um			100um	-7.5um	12:00:06	12:15:14	00:15:08		
14	170um		180um	125um			100um	Oum	11:59:52	12:15:14	00:15:22		
15	170um		180um	75um			100um	-15um	12:00:05	12:15:15	00:15:10		
16	170um		180um	100um			100um	7.5um	11:59:49	12:15:21	00:15:32		
17	170um		180um	75um			100um	7.5um	12:00:09	12:15:22	00:15:13		
18	170um		180um	50um			100um	-15um	12:00:00	12:15:26	00:15:26		
19	170um		180um	50um			100um	7.5um	12:00:04	12:15:29	00:15:25		
20	170um		180um	50um			100um	Oum	12:00:02	12:15:30	00:15:28		
21	170um		180um	50um			100um	-7.5um	12:00:01	12:15:36	00:15:35		
22	170um		180um	150um			100um	15um	11:59:58	12:23:33	00:23:35		
23	170um		180um	150um			100um	7.5um	11:59:59	12:24:17	00:24:18		
24	170um		180um	75um			100um	Oum	12:00:07	12:25:47	00:25:40		
25	170um		180um	75um			100um	15um	12:00:08	12:26:02	00:25:54		
										6h	r 51 n	nin	

DSO Solution Time

(Option) DDM (Domain Decomposition Solver)

Review DDM Technique

- DDM subdivides a mesh into smaller mesh "*sub-domains*" that are solved in parallel.
 - A "master" node iteratively solves for total solution
 - Subdivision into domains is automated
 - Easy to use!!!
- The user defines a set of N available compute nodes to be used for a DDM solution
 - n=1 is the "master" node, single core
 - n=2 to N are the sub-domain nodes solved with direct solver

Example of Domain Mesh

Domain Decomposition Process

Antenna Example for Domain Decomposition Solver

- UFH blade antenna on F-35 JSF
 - 350 MHz solution frequency
- Demonstrates savings in computational time and RAM

	Direct Solver (1 CPU)	Iterative Solver (1 CPU)	Domain Solver (15 domains)
Total Memory	33 GB	12 GB	20 GB
Average Memory	33 GB	12 GB	1.35 GB
Final Adaptive Pass Time	6hr 27min	1hr 20min	22 min

HFSS 12 New Significant Capabilities

HFSS 12 Includes Fundamentally Different 3D Mesher

NSYS[®]

HFSS 11 (bottom up algorithm)

Volume Mesh

- Generally requires water-tight, clean geometric model
- Mesh quality depends on ACIS faceting triangulation quality
- Geometry flaws can cause stitching failure
- Less control on mesh quality
- Localized jump from small to large elements is possible

Mesh coarsening

HFSS 12

(top down algorithm)

Meshes higher percentage of models

Mesh quality is ensured

Surface Mesh

- Automatic healing and repair
- More uniform mesh (gradual transition in element size)

Example Meshing Improvement

HFSS 11 mesher has difficulty with intersecting curves

HFSS 12 TAU mesher produces clean result

Example Resonator with Concentric Spherical Dielectrics

- Curvilinear elements yield same accuracy as highly discretized rectilinear elements
 - Uses 88% fewer tetrahedra
 - Runs 16X faster

# Segments	f (GHz)
8	8.75
12	8.54
24	8.53
36	8.4
48	8.4
64	8.39
Curvilinear*	8.38

For $\Lambda F = 0.1\%$	Mesh	CPU
	Elements	Time
36 segments	53k	00:16:40
22.5° curvature	6.37k	00:00:55

*I Wolff, "A generalized description of the spherical three-layer resonator with an anisotropic dielectric material," *IEEE AP Symp,* June 1987, pp. 307-310

(Option) HFIE (High Frequency Integral Equation Solver)

High Frequency Integral Equation Solver (HFIE)

- 3D method of moments (MoM) solver
- Integrated into exiting HFSS interface and infrastructure as additional design type
- Optimal method for solving large "open" problems
 - Radiating problems such as larger reflector antenna or radar cross section (RCS) of aircraft platform

HFIE: Interface

HFIE: Cone Sphere

RCS cone sphere at 9GHz.

Overall length 26.768" (≈20λ)

Incident directions for various ϕ at $\theta=90^{\circ}$. E_{θ} directed.

J_{HFIE} for inc. angles $\phi=0^{\circ}$ and $\theta=90^{\circ}$

Data available from: A. Woo et al, "Benchmark Radar Targets for the Validation of computational electromagnetic programs," *IEEE AP Mag.*, Feb., 1993, pp. 84-89

HFIE: Cone Sphere

E^{scatt} for $\theta = 90^{\circ}$ with incident angles $\phi = \theta = 90^{\circ}$:

•HFSS pass 2: 27.5GB 7 hours real time.

HFIE: Reflector Antenna

* Data available from Lyerly, et al, "Equivalent edge current technique for accurate determination of reflector antenna patterns," *IEEE AP Symp.*, 1993, pp. 254-7

HFIE: Reflector Antenna

HFIE seeded λ /10 and 1 pass: 24 min 1.6GB Ram HFSS: 3hr, 30GB - last pass. Run 7 passes using iterative solver. Resulting Δ S = 0.12.

(Option) FEBI *(Finite Element – Boundary Integral)*

Hybrid Finite Element-Integral Equation Method

This Finite Element-Boundary Integral hybrid method leverages the advantages of both the floor of the floor o

Finite Element – Boundary Integral: ANSYS®

- True solution to the open boundary condition
 - Surface currents directly computed by IE solver
 - Very accurate far fields
- No minimum distance from radiator
 - Advantage over ABC
- Reflection less boundary condition
 - Ability to absorb incident fields is not dependent on the incident angle
- Arbitrary shaped boundary
 - Outward facing normal's can intersect
 - Can contain separated volumes
- FE-BI does come with a computational cost
 - Ability to create air box with smaller volume than ABC or PML can significantly offset this cost
 - Air volumes that much smaller than ABC/PML boundaries will be solvable in less RAM with FEBI

Finite Element Boundary Integral: ANSYS Solution Process

FEBI – Benchmark #2

Run with rectangular air box and PML and with separate closely spaced FEBI

(Option) HFSS - Transient

HFSS-Transient

- Full-wave solution for solving transient design problems
- Based on Discontinuous Galerkin Method (DGTD)
 - Applied to **unstructured**, finite element mesh
 - **Rigorous** and **accurate** solution to arbitrary geometries
- Applications
 - Pulsed Ground Penetrating Radar (GPR)
 - Lightning strike
 - Electrostatic discharge (ESD)
 - Time Domain Reflectometry (TDR)
 - Transient field visualization
 - Pulsed radar cross section (RCS)
 - EMI/EMC

Transient problems

