APPLICATION WORKSHOPS FOR HIGH-PERFORMANCE ELECTRONIC DESIGN

"EM-Circuit Co-Design Solution for High-speed Memory Applications"

Presenter:

Ansoft Corporation

EM-based Circuit Co-design Enables First-Pass Memory System Success

 Nexxim[®]: Co-Design Environment with IC chip, PCB module, Socket/Connector and System Board

Outline

- High Speed Memory System
 - First-Pass Memory System Success
 - Design Issues
- High Speed Memory System Analysis
 - SSN/Eye Analysis Example
 - Impedance Analysis Example (DDR3 RDIMM)
- Introducing: Memory system virtual test wizard
 - SSN/ Eye Diagram Analysis
- Summary

First-Pass Memory System Success

Achieve First-Pass high-speed memory system success with full channel simulation

Design Suite for High-speed Memory Applications

- Nexxim[®] : Design environment for memory systems
 - Frequency and time domain circuit analysis
 - Co-simulation and dynamic link
 - Optimization and Tuning

- SIwaveTM : PCB and Package EM analysis and modeling
 - S-parameter extraction for bus lines
 - Export SPICE sub-circuit (HSPICE or Full-wave s-element model)

■ HFSSTM : Connector and Socket EM analysis and modeling

Introduction : What is High-speed Memory ?

Design Issues: Speed

– Fundamental frequency increase => more SI/PI issues

(Mismatch, ISI, Cross-talk, EMI)

Design Issues: Power

Supply power decrease => more PI issues (Power Noise)

High-speed Memory system

Design Issues : Board level - Via Stub effect

Design Issues : Board level - Via Pad size effect

Design Issues : 3D Interconnection

- 3D interconnects are critical for high-speed design

Design Issues: Wide data buses SSN/SSO

- Power/Ground SSN will cause:
 - Logic failure, Timing delay/skew, Coupling to signal line, EMI
- How to analyze the complex Power/Ground plane ?

Design Issues: SSN coupling to signal line

ANSOFT

Design Issues: Termination scheme

SSTL18: Stub-Series Terminated Logic for 1.8 Volts (DDR2, JEDEC interface standard)

- SSTL18 specifies 13.4mA into a 25 Ω load
- t_{S} is the minimum time interval within which a valid signal must meet $V_{\rm IH(AC)}$ or $V_{\rm IL(AC)}$

FWS model for bus channel

- FWS model : SPICE model ensures wide band accuracy (Full Wave)
- S-parameter model vs. HSPICE format model from Slwave FWS export

Frequency dependent parameter

Have to consider:

- Conductor loss
 - Skin Effect
- Dielectric constant and loss
 - Djordjević-Sarkar model

$$\varepsilon(\omega) = \varepsilon'(\omega) + j\varepsilon''(\omega)$$
$$= \varepsilon_{\infty} + \frac{\Delta\varepsilon}{\ln(\omega_B/\omega_A)} \ln\left(\frac{\omega_B + j\omega}{\omega_A + j\omega}\right) + \frac{\sigma}{j\omega\varepsilon_0}$$

Frequency dependent models are default in Slwave

High-speed Memory system Analysis Example

SSN/Eye Analysis Example

SSN/Eye Analysis Example

- Xilinx Virtex5 ML523 Board [1]
- Micron DDR2 Memory [2]

Xilinx Virtex5 ML523 Board

Clip Design in Slwave

Region for SSN/Eye Analysis

DDR2 Nets & Power

DDR2 signal nets and Power nets on clipped design

Ports setup for SSN/Eye Analysis

OU OUT ACA UP

- 36Ports setup for SSN/Eye Analysis
 - Ports for Data line : DQ0-15
 - VRM Ports : Vcc1v8 net, Vdd DDR2 net

Slwave FWS Export

- S-Y-Z-parameter setup
 - Discrete 0~5GHz, 501 point sweep for transient analysis
- Full Wave SPICE Sub-circuit setup
 - HSPICE format

Compute S-, Y-, Z-parameters/FWS Circuit Frequency Range Setup Start Freq / Hz Stop Freq / Hz Num. Points Distribution 1 0 5E+009 501 Linear	Compute Full Wave SPICE Subcircuit File name: ML523_PCB_v2_clipped_DQ Browse
Add Above Add Below Delete Selection Preview Min Rise/Fall Time / s Image: Selection Preview IE-010 Image: Selection Preview Sweep Selection Image: Selection Parameter Plot Options Image: Discrete Sweep Image: Plot S-parameters Image: Plot S-parameters Image: Plot Selection Image: Plot S-parameters Image: Plot S-parameters Number of Interpolation Points: 200 Image: Plot Separameters Image: Plot Separameters Image: Plot Separameters <th>Full Wave SPICE Subcircuit Format HSPICE Maxwell SPICE PSPICE Spectre Nexxim/HSPICE S element S-Parameter Renormalization Renormalize all S-parameters to S0 Use existing port reference impedances</th>	Full Wave SPICE Subcircuit Format HSPICE Maxwell SPICE PSPICE Spectre Nexxim/HSPICE S element S-Parameter Renormalization Renormalize all S-parameters to S0 Use existing port reference impedances

Nexxim Schematic for SSN/Eye Analysis

- SSN/Eye Analysis Schematic
 - PCB model : HSPICE format model from Slwave FWS export
 - Driver/Receiver : SSTL18_II , IBIS I/O buffer model
 - Package sub-circuit
 - PRBS logic and DC source for VTT termination

SSN results and Jitter noise by SSN

Vdd tolerance SPEC : ± 100mV

SSN coupling to signal

Switching noise coupling to signal

DQS Lines Skew Analysis

- DQ,DQS include meander lines for delay and skew
- Schematic for DQS lines skew analysis

DQS Lines Skew Analysis Results

Skew Analysis results for DQS0-7

DQS3 line show larger skew than others

Skew Analysis Results

XY Plot

Why DQS3 line show large skew than others ?

DQS, DQ Line Timing and Slew Rate Analysis

- DQS, DQ point-to-point connection:
 - Controller IC Package Via Line Via Rs Via Line Via SDRAM Package
 - Driver and Receiver buffer model , C_comp, L_pkg, R_pkg, C_pkg

DQS, DQ Line Timing and Slew Rate Analysis

 Nexxim Schematic for DQS, DQ lines timing and slew rate analysis

Timing and Slew Rate Analysis

Nexxim Eye Diagram Plot

SHOPS FOR HIGH-PERFORMANCE ELECTRONIC DESIGN

Plotting Range Eye Plotting Range of Transient Results

Add Eye Mask

Eye Mask

- Edit Eye Mask
- Export/ Import Mask file

ask	polygon points		
	Time[ns]	Voltage[V]	7
1	0.82	1.15	-
2	1.65	1.025	
з	1.65	0.775	
٤	0.82	0.65	
5	0.82	1.15	
Add Up	upper/lower limits per limit	[V]	
Add Up Lov	upper/lower limits per limit 1.15 wer limit 0.65	[V]	ок

Nexxim Eye Diagram Plot

Add Eye Measurements All Eye measurements can be displayed

High-speed Memory system Analysis Example

Impedance Analysis Example (DDR3 RDIMM)

DDR3 Memory Module PDN

- Power Distribution Network Design for DDR3 memory module
 - Should be considered with Main board PDN impedance
 - Should meet the Vdd noise SPEC : \pm 75mV (Vdd=1.5V)
 - Vdd noise is transferred to Vref
 - Need Freq. domain optimization (de-cap. Tuning) with P/G
 Impedance Plot

DIMM Decoupling Capacitor

- DIMM decoupling capacitor :
 - Affect at range of ~150MHz

Impedance profile for DDR_VDD nets

DDR3 RDIMM PDN Analysis

 Mother board PDN can be modeled by equivalent Capacitor which has series R/L

What If ? De-Cap. Change

What If ? De-Cap. Change

De-Cap. Tuning

- Case1 : 0.01uF (34EA, VDD De-cap.)
- Case2 : 0.1uF (34EA, VDD De-cap.)
- Case3 : 0.47uF (34EA, VDD De-cap.)

Introducing: Memory System Virtual Test Wizard (Ansoft PCB Design Suite Wizard)

APDS Wizard Demo

SSN & Eye-Diagram for High Speed Memory Data Bus

Simulation Target

Memory Controller

Checking data Lines: Controller IC-to-DDR2 Memory

 \rightarrow it's a critical path for High-Speed Memory

Previously ...

1. PCB S/Y/Z parameter Simulation SPICE Model Extraction

Property C. B	11		-
Di Loniero	+- +- 1		
e B Analysis e B Innig Yudhater		1 1 1 1	
Concerns	-+	- * -*	
Californiana	+-+-	+ + + +	
	the state		
T. Standard			
n . Pedegle Pa	at the state	1 1	
	the state		
	and the literature	14 14	_

4. Copy & paste & modify... repetition, repetition ...

and in the second			.,
Construction C	$\begin{array}{c} (x_1,x_2)_{i=1}^{N}(x_1,x$	(1) (1) <td></td>	
	(New Page)		-

2. Import SPICE model Assign port name at each pin

5. Assign Vdd & GND... Attach voltage probe... Routing...

3. Apply package models.. Check up IBIS files.. Set up IBIS buffer models..

the second s		and in the second se	10.5
tane dente l' Dodo najob Canto Dia (1 ja 3) Dia (2 ja 3)	Tana Teng/Max		=
Northem			
P Endle Transer Hina Milatrae (Name Same Transformer Provide Same Same Same Same Same Same Same Sam	-	Name Decart Name Decart Decart Ma wij 204, 344, yr 108
Tanka Taka Data Data Data Interior Mittana	Taket	~	
			the
	James Team Contraction of the second		

6. Setup simulation.... Analyzing.... make Report....

Previously, these steps were completed manually.

And..

Now!

Automation Process

ANSOFT

What is VB Script?

Port Assignments on PCB Line

ML5	Circuit Element Generation Di	alog			-O×	-	B
	Positive Terminal Component Part Name: 0603-A4 Reference Designator: RP1_0	4	Reference Terminal Comp Part Name: Reference Designator:	onent 0402_0ohm R160	-	♥♥	D.
	Circuit Element Positive Terminal	Circuit Element Refe P DBR.CKNH P DBR.CKNH P P DBR.CKNH P P P P DBR.CKNH P P P P P P P P P P P P P	Collapse Tree Pin at Location pin as reference pin tithin the reference distance mils v fipe © Port © Current Source © Voltage Source © Voltage Probe	Circuit Elements ■ DOR_D15_U1-U25 ■ DOR_D14_U1-T25 ■ DOR_D14_U1-T25 ■ DOR_D14_U1-T26 ■ DOR_D12_U1-T28 ■ DOR_D12_U1-T28 ■ DOR_D12_U1-T28 ■ DOR_D6_U1-T29 ■ DOR_D7_U1-T29 ■ DOR_D7_U1-T29 ■ DOR_D7_U1-T29 ■ DOR_D7_U1-T29 ■ DOR_D7_U1-T29 ■ DOR_D7_U1-T29 ■ DOR_D14-R_U11-T9 ■ DOR_D7_H_U11-62 ■ DOR_D7_H_U11-62 ■ DOR_D7_H_U11-63 ■ DOR_D17_H_U11-63 ■ DOR_D17_H_U11-63 ■ DOR_D17_H_U11-63 ■ DOR_D17_H_U11-77 ■ DOR_D7_H_U11-77 ■ DOR_D17_H_U11-77 ■ DOR_D17_H_U11-77 ■ DOR_D17_H_U11-78 ■ DOR_D17_H_U			

- **1. Import** layout data & component information to Slwave
- 2. Just Select PCB lines to simulate.
 - → Slwave will automatically generate the ports

That's ALL that you have to do...

APDS Wizard

You don't need simulation skill. Just Use.

Step #1 – SIW Loading

2. Input the data speed of memory

 \rightarrow to decide the sweep range of S parameter simulation

3. Check this option for S parameters simulation & SPICE extraction using Slwave

	als model Setup					
	SIS MOVEL SELUP		Component	Model Selector	Model	
Driver :	D:\temp\virtex5,ibs		VIRTEX-5	• N/A •	SSTL18_II	-
		Read 🕨	Component info	Automatch	Buffer type : ibisIO8	
Receiver :	D:₩temp₩u26a_800,ibs		MT47H16M16BG-3_25	- DQ -	DQ_FULL_ODT50_800	-
		Read 🕨	Component info	Automatch	Buffer type : IbisInput4	

APDS wizard contains Intelligent IBIS file Analysis Engine

Major functions of IBIS file Analysis Engine

- Extract all package models (Components) at each pin.
- Extract Typical & Min & Max R/L/C parasitic for each component
- Model selector listing & auto-mapping with models
- Extract all model information such as model_type, VDD/GND clamp...
- Automatic composite IBIS buffer model name for Nexxim at each model
- Intelligent Handling for IBIS file with off-standard format (IBIS rule check engine)

When a model name is selected,

IBIS file analysis engine checks the model_type & clamp condition of that pin in the IBIS file and then composes the model type for the Nexxim simulation at the same time.

Ex) pin model : SSTK18_II

Model_type in IBIS file : I/O Clamp : exist at VDD & GND node

→ Needs I/O with Clamp type buffer.

→ automatically generate model name "ibisIO8" for IBIS model of Nexxim

IBIS File Information

Main information of the IBIS file is presented in the APDS wizard

Component description, package models, model type, signal name of each pin ...

Note: Don't open & read IBIS file with text editors such as Notepad, VI, etc. ©

 When you read Slwave file(*.siw) , All PCB ports will load to Open Port List

2. You can move ports to any port list from open port

by clicking Get Button

Very Simple & Easy

- 5. If it's needed, add external termination to all receiver ports
 - by clicking the "Copy from Receiver" button once.

Check the box adjacent to any port whose voltage is to be plotted. A probe will appear next to all selected ports.

Automatch

Just 1 Click!

The Automatch option will assign all Driver & Receiver ports at once, by checking the Slwave port name and pin name in the IBIS file.

Last Step – Optional Setting

Wizard Start!

3. Schematic Generation

Automatic Schematic Generation

Simply watch the animation of the schematic being generated O

IBIS models in NEXXIM

APDS Wizard can generate a schematic for any IBIS model type in NEXXIM using the Adaptive Schematic Generation Engine.

R/L/C Package models

It's very important at high speeds to apply accurate package models.

However,

individually assigning different R/L/C parasitics to each pin/port is time consuming & prone to error.

Now, the APDS Wizard allows R/L/C parasitics to be applied rapidly and accurately.

Note: If the IBIS file doesn't have exact parasitic information for each pin, the APDS Wizard will extract typical parasitic values from the IBIS file and will automatically apply these to all R/L/C components.

Simulation Result - SSN

Automatic Simulation & Eye-Diagram Report

- EM-based circuit co-design
- Through examples, it was shown how simulation technology may be used to address several current, high-speed memory design challenges and, ultimately, to identify optimal first-pass designs. Specifically, we focused on: Signal noise analysis : Jitter, Eye-Diagram : Power noise : SSN

art : of WarneWM 523 PC8 v2 cloped spare 521a site

STEP 3 : PORT ASSN

Read Re Stepal | 100 Mines + 1.5 ns (Pulse With)

 The Ansoft PCB Design Suite Wizard for Eye/SSN analysis was introduced.

References

- [1] UG225 (v1.1) August 6, 2007, ML52x user guide, www.xilinx.com
- [2] Micron DDR2 SDRAM data sheet, http://download.micron.com/pdf/datasheets/dram/ddr2/256MbDDR2.pdf
- [3] Hynix DDR2 SDRAM data sheet, http://www.hynix.co.kr/datasheet/pdf/dram/HY5PS124(8_16)21C(L)FP(Rev0.6).pdf
- [4] Tom Granberg, "Handbook of Digital Techniques for High-speed Design", Prentice Hall, pp. 156-160 and Part 3.

