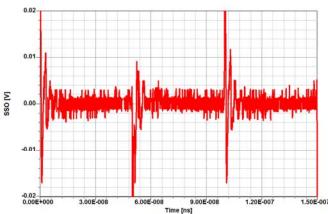
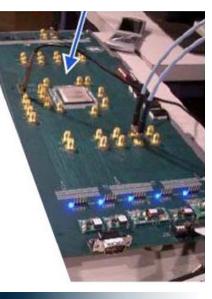
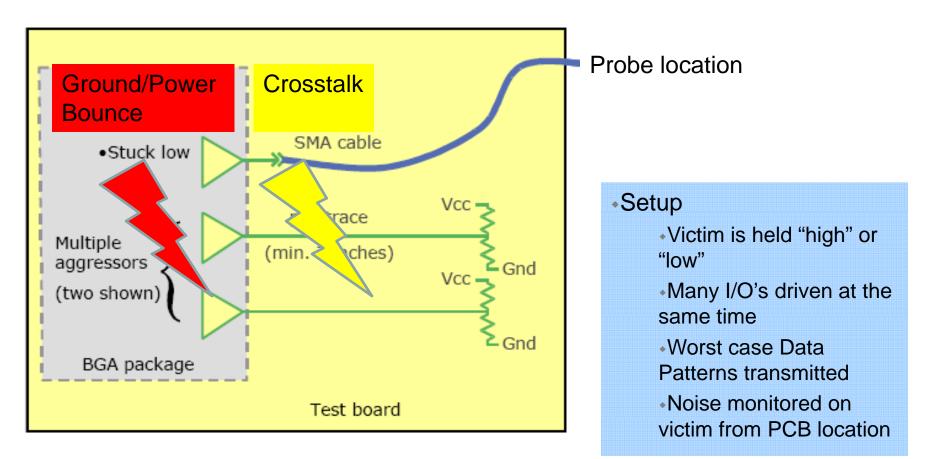
Accurate and Efficient SSN Modeling Chris Herrick


Agenda


- What is SSN?
- Model Types
- Modeling techniques
- Simulation Tips and Tricks
- Incorporating the latest Ansoft features
- Conclusions

What is SSN?

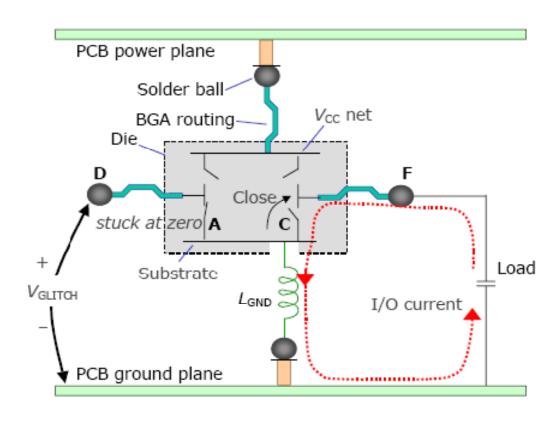
- Simultaneous Switching Noise is the deleterious effect of simultaneous switching outputs (SSO).
- Also referred to as Ground Bounce or Power Bounce
- Exacerbated by poor return path and high loop inductance
- Measured by fixing victim High or Low and monitoring output



Why is SSN important?

- SSN Analysis gives more complete picture of both Signal Integrity and Power Integrity
- Ignoring the effects of SSO can result in a failed system design
- Increased challenges as speeds increase, voltages decrease and current increases
- Helps uncover problematic crosstalk
- Helps evaluate true PDN performance

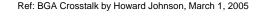
Typical Setup



Ref: BGA Crosstalk by Howard Johnson, March 1, 2005

HIGH-PERFORMANCE EDA

SSN From Ground Bounce

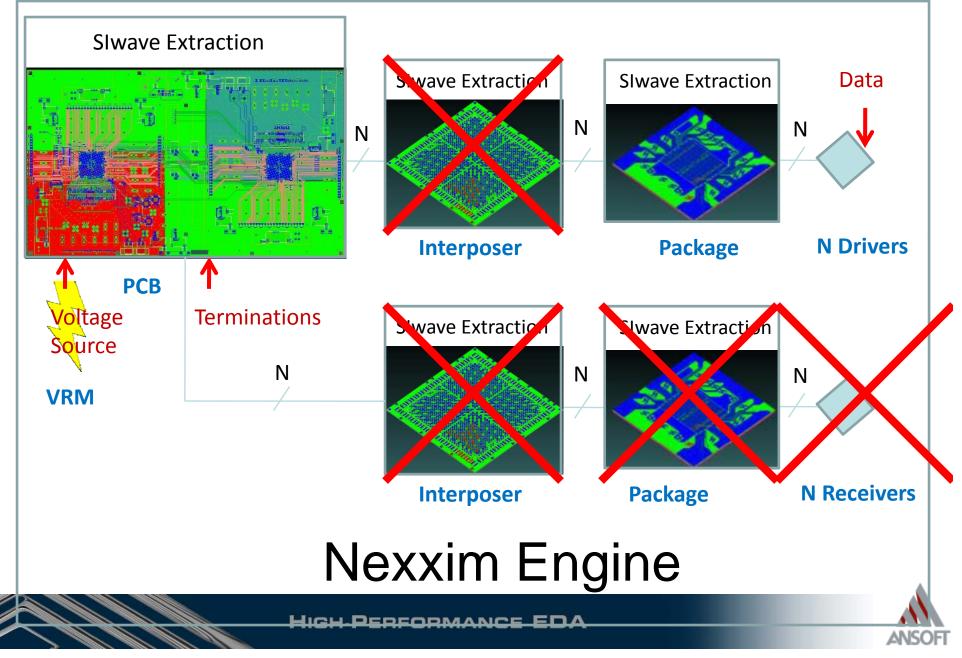


•BGA between PCB power and ground planes

•At time zero switches C closed and F transitions Low -> huge I/O current transient

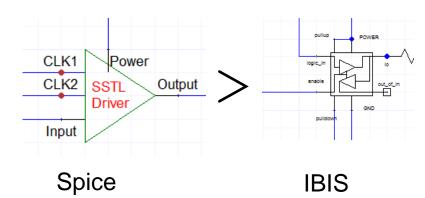
$$V_{glitch} = L_{gnd} di/dt$$

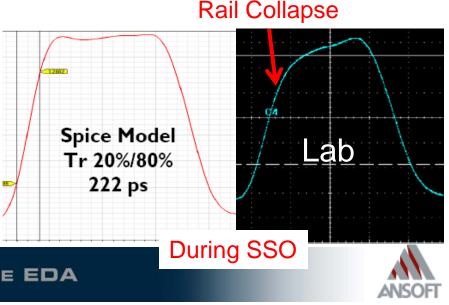
•Victim D is held low will transmit voltage V_{glitch}


HIGH-PERFORMANCE EDA

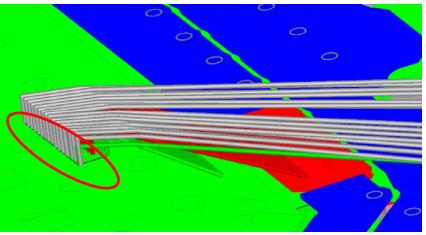
Model Types

- Need to include all relevant effects of system; Both SI and PI
- Need models for: ICs, Packages, PCBs and VRMs
- Models may be extracted or gathered from vendors
- Each model should be independently verified for accuracy




Designer Environment

Driver Models


- Need to accurately model Signals and Power
- Obtain transistor level models if at all possible
- IBIS tends to be pessimistic because current scales linearly with increased drivers
- Verify waveforms for single driver AND during SSO

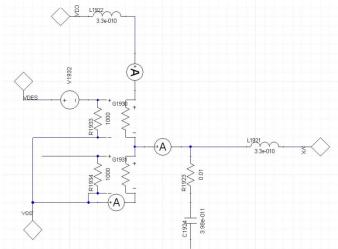
Package Model

- Obtain layout and extract if possible
- Add Solderballs, Solderbumps, Bondwires to model

- Group Power/Ground pins on die side
- Extract Bank of signals

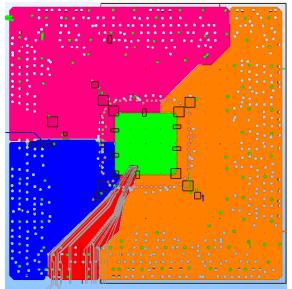
HIGH-PERFORMANCE EDA

PCB Model

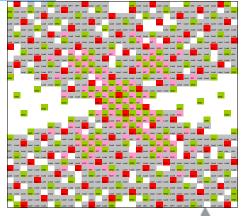

- Extract individual Signal Power/Ground Pins at Package if feasible
- Place port at VRM
- Place port on victim far end
- Terminate far end of line with resistors

VRM Model

- Almost always modeled as an ideal voltage source
- Could also use non-ideal circuit model
- Important for DC-DC switching power supplies


Modeling Techniques

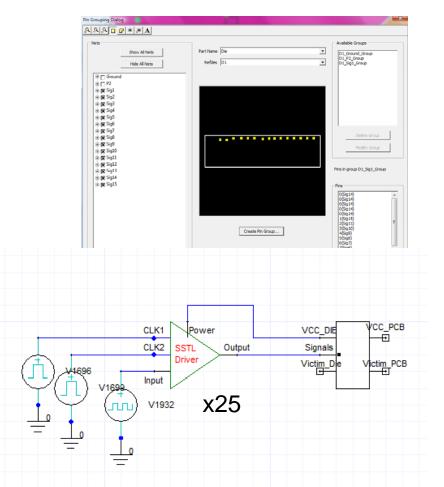
- Kitchen Sink Simulate Everything!
 - Generally not practical
- Nearest Neighbors
 - Only simulate what's relevant
- Signal grouping
 - Combine many pins into one and scale driver
- Current Mirror
 - Mirror a single driver multiple times


Nearest Neighbors

- 1. Identify Victim and nearest neighbors based on proximity
- 2. Extract largest segment you can afford with available hardware
- 3. Attached Driver models to each signal pin

High Speed Packages generally have banks-easy to segment

Well placed PWR/GND balls limit return path loop area

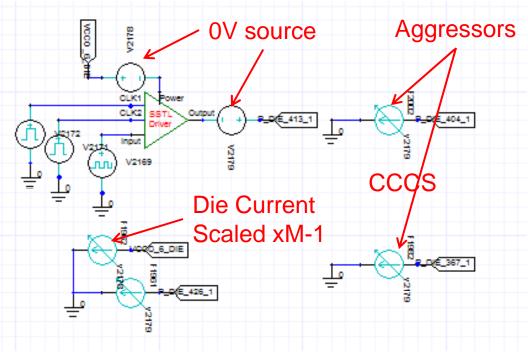

Nearest Neighbor Tradeoffs

- Most accurate and flexible method
- Simulates Skew/Delay between lines
- Allows different data patterns
- Long transient simulation
- Potential for convergence trouble

Signal Grouping

- 1. Apply pin grouping to signals at Die side
- 2. Attach single port for Aggressor group
- 3. Extract PCB ports as before
- 4. Create subcircuit for driver model
- 5. Multiply subcircuit M times and connect to aggressor port

X1 CK1 CK2 Input Output Power driver M=25


Signal Grouping Tradeoffs

- Much quicker analysis
- Greatly reduces port count
- Eliminates convergence issues with multiple drivers
- Not simulating XTLK induced skew
- Same data pattern used on all aggressors
- Assumes all lines are similar in impedance and delay
- Lose information on individual lines
- One bad signal line will affect net results

Current Mirroring

- 1. Use same extracted model as "Nearest Neighbors"
- 2. Place driver on one aggressor
- Monitor current at signal and die connections using series 0v Voltage sources
- 4. Attach CCCS to all other signal lines mirroring same current as driver
- 5. Attach CCCS to die scaling current x M-1 drivers

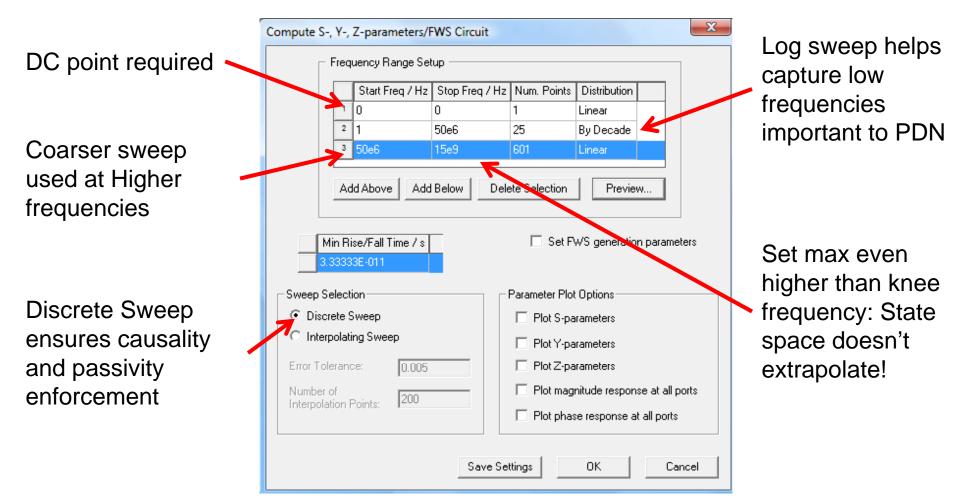
Ref: Digital Signal Integrity, Young

Current Mirroring Tradeoffs

- Much quicker analysis
- Eliminates convergence issues with multiple drivers
- Still can inspect individual s-parameters
- Not simulating XTLK induced skew
- Same data pattern used on all aggressors
- Assumes all lines are similar in impedance and delay

Simulation Tips and Tricks

- Convolution versus state-space
- Frequency sweep setup
- Mixed port impedances
- Achieving Convergence



S-parameter Handling

State-Space (Default)	Convolution
 Much faster for long transients Passivity enforcement Causality enforcement Up front cost building model Does not extrapolate May not achieve fit on noisy data Cannot model long delays, ~22 λ 	 More options for convergence Can handle long delays Data filtering options Extrapolates well Sim time increases quadratically with tran time Requires linearly spaced data

Sweep Setup

HIGH-PERFORMANCE EDA

Port Impedances

Choose port impedances that are relatively close to structure impedance

Use 1 or .1 ohms for power, 50 ohms for signal lines

This helps model accuracy and avoids 0dB values in touchstone file

🖈 Active	Name	Reference Impedance (Ohms)	Port Positive "Terminal" Net	Port Negative "Terminal" Net	Port 🔺
Yes	Package_C3	50	NETC03	GND	C3(L
Yes	Package_C4	50	NETC04	GND	C4(L ≡
Yes	Package_C5	50	NETC05	GND	C5(L
Yes	Package_C6	1	VCCO_6	GND	
Yes	Package_C7	50	NETC07	GND	C7(L
Yes	Package_C8	50	NETC08	GND	C8(L
Yes	Package_C9	50	NETC09	GND	C9(L
Yes	Package_C10	50	NETC10	GND	C10(
Yes	Package_C12	50	NETC12	GND	C12(
Yes	Package_C13	50	NETC13	GND	C13(
Yes	Package_C14	50	NETC14	GND	C14(
Yes	Package_C15	50	NETC15	GND	C15(
Yes	Package_C16	1	VCCO_6	GND	
Yes	Package_D3	1	VCCO_6	GND	
Yes	Package_D4	50	NETD04	GND	D4(l
Yes	Package_D5	50	NETD05	GND	D5(l
Yes	Package_D6	50	NETD06	GND	D6(l
Yes	Package_D7	50	NETD07	GND	D7(l
Yes	Package_D9	50	NETD09	GND	D9(l
Yes	Package_D10	50	NETD10	GND	D10
Yes	Package_D11	50	NETD11	GND	D11
4					*

Designer dynamic link to Slwave will preserve port impedances

HIGH-PERFORMANCE EDA

Achieving Convergence


- Inspect individual models (Divide and Conquer)
 - Realistic data, passive, causal
 - Sufficient bandwidth, resolution
 - Frequency dependent materials
- Bypass/Deactivate components to find root cause
- Check state-space fit; tighten s_element.reltol
- Increase s_element.max_states
- Slow risetimes/Soften Edges
- Try generic sources, i.e. Gaussian PRBS
- Reduce .tran step
- Decrease reltol and abstol
- Try convolutions 1-3
- Reduce s-parameter port count

Schematic Setup

- Schematic setup can be tedious and error prone when working with large number of components
- Modular/hierarchical blocks can aid with design management and debugging
- Four methods for automatic setup:
 - Dynamic Linking
 - APDS
 - Designer I/O Wizard
 - Slwave Slwizard

Dynamic Links

Stand-alone GUI to setup transient analysis

Specifically tailored to SSN of DDR interfaces

	Separated IBIS &	&ports Ope	en ports list	
	for Driver & Rec	eiver to b	e applied to app	propriate port
	M APDS Wizard v4,0 Příš - About			
is	PCB file D1doc/DDR2ttrain_files/DDR2_train_ Driver D1doctDDR2ttrain_files/write VRTEX-5 Info At Info SSTL18_I	Receiver Dxdoc/DDR2train_flestW4f51 K4T51XX3QE_X16 info All DQ_FULL_ODT_OFF	DDR_D0.R_U11.G8 DDR_D0_U11-F29 DDR_D1.R_U11.G2 DDR_D1.R_U11.G2 DDR_D1_U1.E29 DDR_D2.R_U11.H7 DDR_D2_U1.R29 DDR_D3.R_U11.H3 Source Setup	Course Coture
S	ibisIO8 Data (DQ) Get Data Transfer Direction Swap	ibisID8 Data (DO) Get Cu	800 Mbps = 1.25 nstit DQ data :	 Source Setup Spec Setup
	Strobe (DQS) Get C	Strobe (DQS) Get Cul Vdd with SSN Get Cul	Add dVi_AC: 0.2 V Input DDR2/3 Spec Transient Setup Step: 0.1 ns Stop: 30 ns C Schematic Generation only	 Transient Setup
		Get Cal Term Setup	Start Recent Result	

HIGH-PERFORMANCE EDA

APDS

Designer I/O Wizard m1 - Schematic

Channel - Via transitions and

LumpPort6:1 Port1

LumpPort7:1 Port3

LumpPort8:1 Port5

U4 Transmission lines

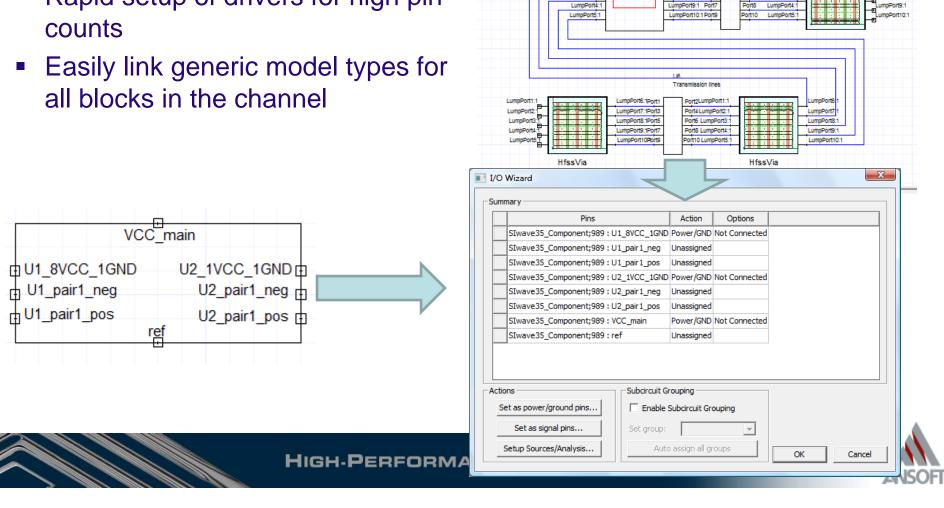
Port2 LumpPort1:1

Port4 LumpPort2:1

LumpPort3:

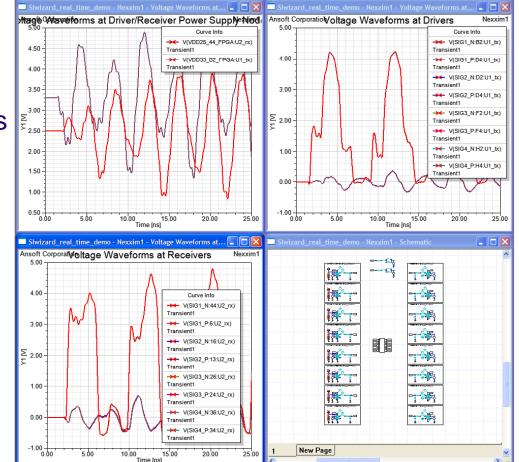
Port6

HfssVia


Connector

SIWave line

LumpPort1: LumpPort2:1

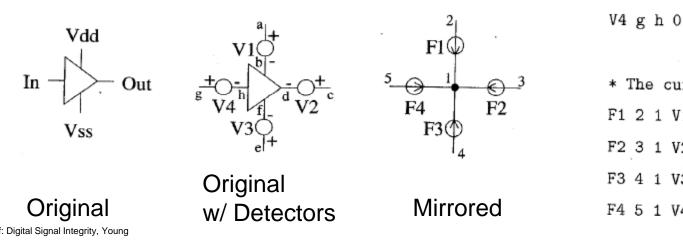

LumpPort3:1

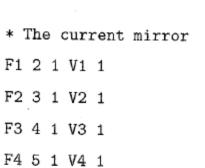
- Launch GUI from Designer 4.1
- Rapid setup of drivers for high pin counts

Slwizard in v4.0 Slwave

- 1. Select signal nets to simulate
- 2. Assign IBIS TX/RX models to pins on nets
- 3. Identify component power/ground nets
- 4. (Optional) Set VRM parameters
- 5. Set Transient Simulation parameters

Pin info preserved from layout


Conclusions


- SSN is a powerful simulation offering insight to both Signal and Power behavior
- Accurate device models are critical
- Set realistic goals and choose the best method to obtain them
- Ansoft has the capabilities and the automation to perform accurate and efficient SSN simulations

Current Mirroring

Place drivers for a single aggressor and the victim. Mirror the current to all other aggressors using CCCS. * The current detectors

V1 a b 0

V2 c d 0

V3 e f 0

Ref: Digital Signal Integrity, Young

HIGH-PERFORMANCE EDA

