Power Plane and D li ecoupling O ptimization Isaac Waldron

Overview

- **Frequency- and time-domain power** \blacksquare distribution system specifications
- **Decoupling design example**
	- **Bare board**
	- Added capacitors
	- **Buried Capacitance**
- **Conclusion**

Frequency Domain PDS Targets

- $\mathcal{L}_{\mathcal{A}}$ Excessive impedance seen by a device drawing power from a PDS will cause power voltage to fluctuate
- On a board, impedance must be below target from DC to several hundred MHz
- **Working in the frequency domain allows quick** estimation of power quality

Time Domain PDS Targets

- **- S-parameters and impedance are** calculated in the frequency domain
- Device specifications are typically given in in the time domain
- **Example: maximum VCC excursion 10%** of nominal value
	- 1.8 V VCC has an allowable range of 1.62 V to 1.98 V

Board Imported from Layout

Measuring impedance at the six VCC pins on U41

Defining the Target Impedance

- **To define the target** impedance we need to consider two **VRM** factors:
	- Peak current
		- **Determines maximum** impedance
	- **Spectral power**
		- **Determines cutoff** frequency

Peak Current

- Peak current 37.87 mA
- maximum voltage swing:

$$
\frac{0.18 \text{ V}}{6(37.87 \text{ mA})} = 800 \text{ m}\Omega
$$

Driver Spectrum

Bare Board

Time Domain Schematic

termination used as load for PDS

Package decoupling modeled using a capacitor w/ ESR, ESL

Switching Power Noise

Spectral Analysis

Adding Bulk Capacitors

Added two 47 uF capacitors as specified by VRM manufacturer

Bare Board vs. Bulk Capacitors Capacitors

Bulk Capacitors

Switching Power Noise

Spectral Analysis

Resonance at 50 MHz 50

Choosing ^a Capacitor

■ To reduce the effect *a* **EX EX EX 22 nF** of a resonance, choose a capacitor with a low impedance at the resonant frequency

Added HF Capacitors

■ 52 20 nF capacitors were added across the board to reduce high-frequency impedance and to cancel resonance at 50 MHz

Bulk vs. HF Capacitors 1

HF Capacitors 1

Switching Power Noise

Extending Low Impedance

- 10 1.2 nF capacitors were added across the board to extend minimum high frequency impedance
- 1.2 nF capacitor was **Ky** Added capacitors chosen due to low impedance at 200 MHz
- 4 of these were located near U41

HF 1 vs. HF 2

HF 2

Switching Power Noise

Resonance at 80 MHz

Removing ^a Resonance

■ Six 8 nF capacitors were added near U41 to cancel resonance at 80 MHz

Choosing ^a Capacitor

• To reduce the effect EXECUTE: 8.2 nF of a resonance, choose a capacitor with a low impedance at the resonant frequency

HF 2 vs. HF 3

HF 3

Switching Power Noise the contract of the contract of

Buried Capacitance

- Due to parasitic inductance it will be impossible to further decouple the board with capacitors
- Using a thinner dielectric layer between power and ground planes introduces additional capacitance and reduces high frequency impedance

Capacitance of
parallel plates:
$$
C = \varepsilon \frac{A}{d}
$$

HF 3 vs. Buried Capacitance

Buried Capacitance

Switching Power Noise the contract of the contract of

Conclusion

- Ansoft software allows PCB engineers to design effective decoupling solutions for their PCBs
- **Impedance and resonant mode simulations** connect the frequency domain to the spatial domain and allow selection of capacitor value and placement
- *Frequency domain* extractions are useful for quickly optimizing PDS designs, but time *domain* simulations are necessary to ensure compliance with device specs

