

Power Integrity Concepts for High-Speed Design on Multi-Layer PCBs

Chulsoon Hwang Missouri EMC Laboratory hwangc@mst.edu

PI Module – Physics

- The PDN problem and some preliminaries
 - What PI design impacts
 - Design choices
 - A quick reminder of
 - circuit element behavior with frequency
 - current physics
- Charge delivery physics for PI design

PDN Problem

High-speed, integrated, and mixed electronic system

Power Distribution Network

- VRM
- Decoupling capacitors
- Power net area fills

Geometry and Inductance Decomposition

Reminder – Circuit Model Behavior with Frequency

PI - 6

Reminder: Current Behavior

— Conduction current – carried by electrons

--- Displacement current – carried by

impeded by

<u>PI Module – Physics</u>

- The PDN problem and some preliminaries
- Charge delivery physics for PI design
- Why Z_{target} is used an FPGA example
- PDN design multi-layer PCBs with power layer area fills
- Design flow for package/PCB PI co-design

Logic Transitions and Current Draw

+

- Shoot-thru current (and everything else we can't account for)
 - Load charging current Load discharge current

This charge to support IC switching must be provided by the PDN – package, PCB PI - 9

<u>The Objective and Guiding Physics:</u> <u>Conduction Current Path results in Inductance</u>

<u>The Objective and Guiding Physics:</u> <u>Condution Current Path results in Inductance</u>

Key Point – Current Path and Inductance

PCB Example

The Objective and Guiding Physics: Current Path results in Inductance

And a (relatively) Simple Z_{PDN}

 Z_{PDN} 17 IC Power Pins

(no package or 10^{2} L_{PCB_IC} die here) 1 decap _____ Z_{target} Due to vias 19 decaps • - • Engineer in PCB 43 decaps 10 $L_{PCB \ IC}$ and connecting package to $Z_{_{PDN}}ig(\Omegaig)$ $L_{PCB EQ}$ to PCB PDN meet the area fills 10 target increasing parallel paths, impedance decreasing inductance 10^{-2} 10^{0} 10 Frequency[GHz] $L_{PCB IC}$ + L due to all parallel paths for decoupling capacitors PI - 14

Ideally for PDN Design

1. Develop noise voltage specifications for the PCB or at the package connections (specs in TD, but can transform to FD)

$$V(\omega) = Z_{PDN}(\omega) \times I_{IC}(\omega) \longleftarrow$$

3. THEN the PCB/package PDN $Z_{PDN}(j\omega)$ can be engineered to meet noise voltage specifications

- Plane stackup, area fills, materials
- Number of decoupling capacitors
- Location, pattern, values and package size of SMT decoupling capacitors

• 2. Calculate the dynamic current draw

The Reality for Dynamic Current Draw

Х

Determining the dynamic current draw is difficult

- Tool in-house or commercial
- Approximate current draw waveform – pulse width, pulse amplitude, pulse sequence

and then specify Z_{target}

$$V_{PDN}(\omega) = Z_{PDN}(\omega) \times I_{IC}(\omega)$$
$$v_{PDN}(t) = F^{-1} \{V_{PDN}(j\omega)\}$$

Engineering $|Z_{PDN}(j\omega)|$ - the Alternative

Choices for PCB PDN design

- Layer stackup, area fill dimensions, and plane separation (maybe)
- Number, value, pattern, location (top/bottom), proximity

work at these design decisions with a limited knowledge of $I_{IC}(\omega)$

$$V_{PDN}(\omega) = Z_{PDN}(\omega) \times I_{IC}(\omega)$$

Select $|Z_{PDN}(j\omega)|$ to meet noise voltage specifications

<u>Key Point – Use Z_{target} for Design</u>

- Design choices (related to geometry)
 - Layer of power net area fill on PCB (and GND power return)
 - Decoupling capacitors will be driven by achieving a specified Z_{target}
- The PDN impedance behavior in frequency is dominated by inductance (with some lumped element resonances) and use design choices to lower inductance in a frequency range corresponding to current path geometry

PI Module – Physics

- The PDN problem and some preliminaries
- Charge delivery physics for PI design
- PDN design multi-layer PCBs with power layer area fills
- Design flow for package/PCB PI co-design
- an FPGA example

Power Plane and Capacitor Location Matrix

\underline{L}_{EQ} – Power Plane Location in Layer Stack

Key Points

- The shape of the Z_{PDN} curve is relatively simple, even though the geometry of the PDN on a multilayer PCB is complicated
- The current-path physics governing the impedance are dominated by inductance and lumped element resonances above approximately 1 MHz
- The inductance is dominated by the current path geometry "length/area" (series inductance), and the number of parallel paths (parallel inductance) and this will drive the design approach ("small — loops and many loops")

- Where power layers are located in stackup
- Package ball pitch
- Decoupling capacitor interconnect
 - Number of PWR/GND vias in package
 - Number of decoupling capacitors

<u>PI Module – Physics</u>

- The PDN problem and some preliminaries
- Charge delivery physics for PI design
- PDN design multi-layer PCBs with power layer area fills
- SMT decoupling
- Design flow for package/PCB PI co-design

- Use an <u>array</u> of capacitor values:
 - This may be the best known approach in the signal integrity design community
 - Rationale: to maintain a flat impedance profile below a target impedance over a wide frequency range
 - Typically a logarithmically spaced (10, 22, 47, 100, 220, 470nF, etc.) array of 3 values per decade.
- Use a <u>large</u> capacitor value in the package size
 - This is less well-known, but an approach in the EMI design community
 - Rationale: to keep impedance as low as possible, less emphasis on a target impedance and a flat profile

<u>Decoupling Strategy – Geometry</u>

Capacitor Description					# of Caps		
Value (nF)	ESR (mΩ)	ESL (nH)	Inter- connect (nH)	Туре	A	в	B1
3.30E+06	60	15	2	E-lytic	1	1	1
100000	11	1.4	2	1812	4	16	16
47000	12	1.4	2	1812	4		
22000	14	1.4	2	1812	4		
10000	16	1.4	2	1812	4		
4700	16	0.5	1.6	0603	4	24	
2200	19	0.5	1.6	0603	4		
1000	23	0.5	1.6	0603	4		
470	29	0.5	1.6	0603	4		
220	23	0.5	1.6	0603	4		
100	30	0.5	1.6	0603	4		
47	40	0.4	1.35	0402	4	20	44
22	55	0.4	1.35	0402	4		
10	75	0.4	1.35	0402	4		
4.7	104	0.4	1.35	0402	4		
2.2	211	0.4	1.35	0402	4		
Total # of Decoupling Capacitors =					61	61	61
Total Capacitance (milliF) =					4.05	5.01	4.90

t=10 mils. tan $\delta = 0.02$ $\epsilon_r = 4.5$

Approaches for SMT Decoupling Values

- Approach A : values of decoupling capacitors logarithmically spaced, i.e. 3 values per decade: 10, 22, 47, 100, etc.
- Approach B : largest values of decoupling available in two package sizes, i.e., 0603 and 0402
- Approach B1 : largest values of decoupling available in one package size, i.e., 0402.

<u>Both</u> approaches can meet the design specs relative to the target impedance

Practices for Mounting SMT Capacitors

Adding trace length, adds inductance to the interconnect:

- "loop area" above the planes $-L_{above}$
- Area between the power and GND return vias vertically connecting to the PWR planes

Design Implications

- PWR/GND plane pair nearer to the IC in stackup will minimize L_{PCB_IC} from package balls to power net area fill (smaller loop)
- PWR/GND plane pairs closely spaced will reduce L_{PCB_plane}.
- Place caps close to the power layer to minimize the inductance from the capacitor to the power net area fill layer, i.e.,
 L_{PCB_decaps}. (minimize the loop)

Design Implications

- Placing caps on the underside of PCB opposite package can benefit the design
 - if the path(s) from the package to bottom of the PCB is comparable to the pkg/planes/decap path due to mutual inductance of the via grid power pattern
 - Unless the pkg/planes/decap path is shorter due to PWR/GND near package in stackup
- Power and ground vias placed adjacent to the caps reduces the inductance in the current return path (or in the bonding pads). (smaller loops)
- Capacitor arrangements that utilize mutual inductance, e.g., doublet, or 3-terminal capacitor, can significantly reduce L_{PCB_decaps}.
- Using a large capacitance value in a given package size can meet the low-frequency target impedance, and inductance can be reduced by adding more capacitors. (many parallel paths)

PI Module – Physics

- The PDN problem and some preliminaries
- Charge delivery physics for PI design
- PDN design multi-layer PCBs with power layer area fills
- Time-domain and frequency domain through a circuit model
- Design flow for package/PCB PI co-design

Circuit Model for PCB PDN

Based on physics-based circuit model

$\underline{V_{ripple}}$ <u>Calculation</u>

Voltage Ripple Separation

<u>PI Module – Appendix</u>

- The PDN problem and some preliminaries
- Charge delivery physics for PI design
- PDN design multi-layer PCBs with power layer area fills
- Design flow for package/PCB PI co-design
- an FPGA example

A Systematic Approach for Achieving PI

PCB PDN

PI - 38

Design Flow – Package

Design Flow – PCB

