Power Integrity Concepts for High-Speed Design on Multi-Layer PCBs

Chulsoon Hwang
Missouri EMC Laboratory
hwangc@mst.edu
PI Module – Physics

- The PDN problem and some preliminaries
 - What PI design impacts
 - Design choices
 - A quick reminder of
 - circuit element behavior with frequency
 - current physics

- Charge delivery physics for PI design

PDN Problem

High-speed, integrated, and mixed electronic system

Power Distribution Network
- VRM
- Decoupling capacitors
- Power net area fills

IC EMI source model?

Effect of PDN noise on I/O jitter
Geometry and Inductance Decomposition
PCB PDN Design Considerations

2a. Decoupling capacitors
- top
- bottom,
- beneath IC?

2b. Decoupling capacitor connection -
- PWR/GND via geometry
- Package size

2c. Decoupling capacitor layout
- How close to IC?
- Shape – ring IC, on one side?

1. Power plane(s)
- location in stack
- spacing to power return plane
- total area fill
- special materials

Effect of other ground/reference planes?

3. IC PWR/GND
- Number pins
- pin pattern
- Pitch
- on-package decaps

Decaps

IC pins

IC

PWR
GND
Reminder – Circuit Model Behavior with Frequency

\[Z'(dB\Omega) \]

\[\frac{20dB}{\text{decade}} \]

\[\log_{10} f \]

\[Z'(dB\Omega) \]

\[\frac{20dB}{\text{decade}} \]

\[\log_{10} f \]
Reminder: Current Behavior

- **Conduction current** – carried by electrons
 \[\vec{J}_{\text{cond}} = \sigma \vec{E} \]

- **Displacement current** – carried by
 \[\vec{J}_{\text{displ}} = \varepsilon \frac{d\vec{E}}{dt} \]

Model with lumped elements if geometry electrically short

Current on a line for high-speed data
PI Module – Physics

- The PDN problem and some preliminaries
- Charge delivery physics for PI design
- Why Z_{target} is used – an FPGA example
- PDN design – multi-layer PCBs with power layer area fills
- Design flow for package/PCB PI co-design
Logic Transitions and Current Draw

- Shoot-thru current (and everything else we can’t account for)
- Load charging current
- Load discharge current

This charge to support IC switching must be provided by the PDN – package, PCB
Voltage Switching/Dynamic Current Draw Disturbances

Dynamic current on power net causes disturbance and can lead to faulty switching, a source of jitter, and trouble in general.

T_1 and T_2 are not simultaneous

- **VPWR**: Power supply voltage
- **V_{PWR} + V_{Noise}**: Power supply with noise
- **VCC**: Supply voltage for IC
- **IC load**: Integrated Circuit load
- **GND**: Ground
- **shoot thru current**: A trouble-maker

banks of transistors for the PMOS and NMOS not perfectly synchronized
The Objective and Guiding Physics: Conduction Current Path results in Inductance
The Objective and Guiding Physics: Conduction Current Path results in Inductance.
Key Point – Current Path and Inductance

Four contributions (current path pieces) to the Z_{PDN} inductance

Looking from the IC

Decoupling capacitors sharing IC vias

Top decoupling capacitors

Above PCB to decaps

caps-to-PWR planes

in PWR planes

Bottom decoupling capacitors

pkg-to-PWR planes

$Z_{\text{PCB-in}} (j\omega)$

GND

GND

GND

PWR

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND
The Objective and Guiding Physics:
Current Path results in Inductance

And a (relatively) Simple Z_{PDN}

PCB Example
(no package or die here)

Engineer L_{PCB_IC} and L_{PCB_EQ} to meet the target impedance

$L_{PCB_IC} + L$ due to all parallel paths for decoupling capacitors

Z_{PDN} 17 IC Power Pins

Due to vias in PCB connecting package to PCB PDN area fills

increasing parallel paths, decreasing inductance

Z_{target}

PCB Example (no package or die here)
Ideally for PDN Design

1. **Develop** noise voltage specifications for the PCB or at the package connections (specs in TD, but can transform to FD)

\[V(\omega) = Z_{PDN}(\omega) \times I_{IC}(\omega) \]

2. Calculate the dynamic current draw

3. **THEN** the PCB/package PDN \(Z_{PDN}(j\omega) \) can be engineered to meet noise voltage specifications

- Plane stackup, area fills, materials
- Number of decoupling capacitors
- Location, pattern, values and package size of SMT decoupling capacitors
The Reality for Dynamic Current Draw

Determining the dynamic current draw is difficult

- Tool – in-house or commercial
- Approximate current draw waveform – pulse width, pulse amplitude, pulse sequence

and then specify Z_{target}

\[V_{PDN}(\omega) = Z_{PDN}(\omega) \times I_{IC}(\omega) \]

\[v_{PDN}(t) = F^{-1} \left\{ V_{PDN}(j\omega) \right\} \]
Engineering $|Z_{PDN}(j\omega)|$ - the Alternative

Choices for PCB PDN design

- Layer stackup, area fill dimensions, and plane separation (maybe)
- Number, value, pattern, location (top/bottom), proximity

work at these design decisions with a limited knowledge of $I_{IC}(\omega)$

$$V_{PDN}(\omega) = Z_{PDN}(\omega) \times I_{IC}(\omega)$$

Select $|Z_{PDN}(j\omega)|$ to meet noise voltage specifications

The concept of target impedance – not entirely satisfactory, but since the physics are dominated by inductance, there will be a limiting value.
Key Point – Use Z_{target} for Design

- Design choices (related to geometry)
 - Layer of power net area fill on PCB (and GND power return)
 - Decoupling capacitors will be driven by achieving a specified Z_{target}

- The PDN impedance behavior in frequency is dominated by inductance (with some lumped element resonances) and use design choices to lower inductance in a frequency range corresponding to current path geometry
PI Module – Physics

- The PDN problem and some preliminaries
- Charge delivery physics for PI design
- PDN design – multi-layer PCBs with power layer area fills
- Design flow for package/PCB PI co-design
- an FPGA example
Power Plane and Capacitor Location Matrix

<table>
<thead>
<tr>
<th>Top decaps only</th>
<th>Power plane at mid</th>
<th>Power plane at top</th>
<th>Power plane at bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>16 Decaps</td>
<td>IC</td>
<td>16 Decaps</td>
</tr>
</tbody>
</table>

- **Power Net under test**: Orange line
- **Reference Net**: Green line
- **Floating Net**: Blue line
L_{high} – Power Plane Location in Layer Stack

Power planes – bottom, middle, top

Z_{PDN} Bottom Caps - Under the IC

Decreasing current path and inductance from package balls to PDN power layer net

Power layer closest to the IC minimizes IC to power plane inductance. (Recall that $j\omega L_{PCB_IC}$ is the impedance limit above a few MHz.)
Capacitors placed on the side closest to the power plane reduces the inductance from the capacitor to power plane and L_{EQ}. The current path length/area is smallest.
L_{EQ} – Power Plane Location in Layer Stack

$L_{PCB_{-}EQ}$ is also decreasing because the L from the decoupling capacitors to the power planes AND the package balls to the power planes is decreasing.
Key Points

1. The shape of the Z_{PDN} curve is relatively simple, even though the geometry of the PDN on a multilayer PCB is complicated.

2. The current-path physics governing the impedance are dominated by inductance and lumped element resonances above approximately 1 MHz.

3. The inductance is dominated by the current path – geometry “length/area” (series inductance), and the number of parallel paths (parallel inductance) and this will drive the design approach (“small loops and many loops”).

- Where power layers are located in stackup
- Package ball pitch
- Decoupling capacitor interconnect

- Number of PWR/GND vias in package
- Number of decoupling capacitors
PI Module – Physics

- The PDN problem and some preliminaries
- Charge delivery physics for PI design
- PDN design – multi-layer PCBs with power layer area fills
- SMT decoupling
- Design flow for package/PCB PI co-design
Two Approaches for SMT Decoupling

● Use an **array** of capacitor values:
 – This may be the best known approach in the signal integrity design community
 – Rationale: to maintain a flat impedance profile below a target impedance over a wide frequency range
 – Typically a logarithmically spaced (10, 22, 47, 100, 220, 470nF, etc.) array of 3 values per decade.

● Use a **large** capacitor value in the package size
 – This is less well-known, but an approach in the EMI design community
 – Rationale: to keep impedance as low as possible, less emphasis on a target impedance and a flat profile
Decoupling Strategy – Geometry

Capacitor Description

<table>
<thead>
<tr>
<th>Value (nF)</th>
<th>ESR (mΩ)</th>
<th>ESL (nH)</th>
<th>Inter-connect (nH)</th>
<th>Type</th>
<th>A</th>
<th>B</th>
<th>B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.30E+06</td>
<td>60</td>
<td>15</td>
<td>2</td>
<td>E-lytic</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>100000</td>
<td>11</td>
<td>1.4</td>
<td>2</td>
<td>1812</td>
<td>4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>47000</td>
<td>12</td>
<td>1.4</td>
<td>2</td>
<td>1812</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22000</td>
<td>14</td>
<td>1.4</td>
<td>2</td>
<td>1812</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>16</td>
<td>1.4</td>
<td>2</td>
<td>1812</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4700</td>
<td>16</td>
<td>0.5</td>
<td>1.6</td>
<td>0603</td>
<td>4</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>19</td>
<td>0.5</td>
<td>1.6</td>
<td>0603</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>23</td>
<td>0.5</td>
<td>1.6</td>
<td>0603</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>29</td>
<td>0.5</td>
<td>1.6</td>
<td>0603</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>23</td>
<td>0.5</td>
<td>1.6</td>
<td>0603</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>0.5</td>
<td>1.6</td>
<td>0603</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>40</td>
<td>0.4</td>
<td>1.35</td>
<td>0402</td>
<td>4</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>22</td>
<td>55</td>
<td>0.4</td>
<td>1.35</td>
<td>0402</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>0.4</td>
<td>1.35</td>
<td>0402</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>104</td>
<td>0.4</td>
<td>1.35</td>
<td>0402</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>211</td>
<td>0.4</td>
<td>1.35</td>
<td>0402</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary

- **Total # of Decoupling Capacitors**: 61 61 61
- **Total Capacitance (milliF)**: 4.05 5.01 4.90

- **Dimensions**:
 - Width: 9 in.
 - Height: 6 in.

- **Materials**:
 - Thickness: t = 10 mils.
 - Dielectric Loss: tan δ = 0.02
 - Dielectric Constant: εᵣ = 4.5
Approaches for SMT Decoupling Values

- Approach A: values of decoupling capacitors logarithmically spaced, i.e. 3 values per decade: 10, 22, 47, 100, etc.

- Approach B: largest values of decoupling available in two package sizes, i.e., 0603 and 0402

- Approach B1: largest values of decoupling available in one package size, i.e., 0402.

Both approaches can meet the design specs relative to the target impedance
Practices for Mounting SMT Capacitors

Adding trace length, adds inductance to the interconnect:

- “loop area” above the planes – L_{above}
- Area between the power and GND return vias vertically connecting to the PWR planes
Design Geometry, Current Path, and Z_{PDN}

Local Decoupling capacitors

Power Fill on Inner Layer

Bulk Decoupling

IC region

Voltage Regulator Module

Design Geometry, Current Path, and Z_{PDN}

Step 1 - 1 Capacitor
Step 2 - 19 Capacitors
Step 3 - 43 Capacitors

$C_{eq} = C_{planes} + C_{decoupling}$

$Z_{PCB-in}(j\omega)$

Looking from the IC

Top decoupling capacitors

Design Geometry, Current Path, and Z_{PDN}

\mathbf{L}_{PCB_IC}

Input Impedance at IC port Ω

Step 1 - 1 Capacitor
Step 2 - 19 Capacitors
Step 3 - 43 Capacitors

$\mathbf{L}_{PCB_IC} + \mathbf{L}_{planes} + \mathbf{L}_{PCB_Decaps} + \mathbf{M}_{ij}$

Decoupling Capacitors Sharing IC vias

Bottom Decoupling capacitors

IC power via

\mathbf{GND}

\mathbf{PWR}
Design Implications

- PWR/GND plane pair nearer to the IC in stackup will minimize L_{PCB_IC} from package balls to power net area fill (smaller loop)
- PWR/GND plane pairs closely spaced will reduce L_{PCB_plane}.
- Place caps close to the power layer to minimize the inductance from the capacitor to the power net area fill layer, i.e., L_{PCB_decaps} (minimize the loop)
Design Implications

- Placing caps on the underside of PCB opposite package can benefit the design
 - if the path(s) from the package to bottom of the PCB is comparable to the pkg/planes/decap path due to mutual inductance of the via grid power pattern
 - Unless the pkg/planes/decap path is shorter due to PWR/GND near package in stackup

- Power and ground vias placed adjacent to the caps reduces the inductance in the current return path (or in the bonding pads). (smaller loops)

- Capacitor arrangements that utilize mutual inductance, e.g., doublet, or 3-terminal capacitor, can significantly reduce $L_{\text{PCB_decaps}}$

- Using a large capacitance value in a given package size can meet the low-frequency target impedance, and inductance can be reduced by adding more capacitors. (many parallel paths)
The PDN problem and some preliminaries
Charge delivery physics for PI design
PDN design – multi-layer PCBs with power layer area fills
Time-domain and frequency domain through a circuit model
Design flow for package/PCB PI co-design
an FPGA example
Circuit Model for PCB PDN

Based on physics-based circuit model

Topologically correct behavioral circuit model

\[L_{PCB_EQ'} = L_{PCB_Decap} + L_{above} + L_{PCB_Plane} \]
V_{ripple} Calculation

Voltage ripple specification

Voltage ripple simulation

Switching current profile

Voltage ripple mathematical calculation
Voltage Ripple Separation

Voltage Ripple

Minimal possible L

Switching Current

$I(t)$

A

$0 \frac{T}{\tau} 2\frac{T}{\tau}$
PI Module – Appendix

- The PDN problem and some preliminaries
- Charge delivery physics for PI design
- PDN design – multi-layer PCBs with power layer area fills
- Design flow for package/PCB PI co-design
- an FPGA example
A Systematic Approach for Achieving PI

- Low-frequency capacitance
- 20 dB per decade
- No on-package decoupling
- PCB vias to IC
- PCB vias to pkg
- pkg+ on-pkg decap
- On-die capacitance

\[|Z_{PDN}| \]
PCB PDN Design Considerations

2a. Decoupling capacitors
- top
- bottom,
- beneath IC?

2b. Decoupling capacitor connection -
- PWR/GND via geometry
- Package size

2c. Decoupling capacitor layout
- How close to IC?
- Shape – ring IC, on one side?

1. Power plane(s)
- location in stack
- spacing to power return plane
- total area fill
- special materials

Effect of other ground/reference planes?

3. IC PWR/GND
- Number pins
- pin pattern
- Pitch
- on-package decaps

IC pins

Decaps

IC

1. Power plane(s)
2. Decoupling capacitors
3. IC PWR/GND

PWR
GND
Design Flow – Package

DC power determines minimum number power interconnects (IR drop, current)

Package ball **pitch** determines minimum achievable high-frequency Z_{target}

Choose **number** *(and pattern)* PWR/GND vias to meet high-frequency target impedance for specified PCB power area fill layer $\rightarrow L_{\text{PCB IC}}$

On-package decaps reduce minimum overall achievable high-frequency target impedance seen by IC

* PCB/package co-design step
Design Flow – PCB

Peak voltage ripple/droop determines Z_{target}

IC/ASIC PWR/GND pin-out number (and pattern) determines minimal $\rightarrow L_{\text{high}}$

Choose PWR/GND area fill layer to meet high-frequency target impedance $\rightarrow L_{\text{high}}$

Number of decaps and placement determines $\rightarrow L_{\text{EQ}}$

to meet Z_{target}

$C_{eq} = C_{\text{planes}} + C_{\text{decoupling}}$

Z_{target}

L_{high}

$C_{eq} = C_{\text{planes}} + C_{\text{decoupling}}$

Z_{target}

$L_{\text{EQ}} = L_{\text{high}} + L_{\text{planes}} + L_{\text{Decaps}} + M$

Input Impedance at IC port [Ω]

Frequency [GHz]

28 layer PCB design

43 Capacitors