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Abstract—This paper is a rethinking of the conventional 

method of moments (MoM) using the modern machine learning 
(ML) technology.  By repositioning the MoM matrix and 
unknowns in an artificial neural network (ANN), the conventional 
linear algebra MoM solving is changed into a machine learning 
training process.  The trained result is the solution.  As an 
application, the parasitic capacitance extraction broadly needed 
by VLSI modeling is solved through the proposed new machine 
learning based method of moments (ML-MoM).   The multiple 
linear regression (MLR) is employed to train the model. The 
computations are done on Amazon Web Service (AWS).  
Benchmarks demonstrated the interesting feasibility and 
efficiency of the proposed approach.  According to our knowledge, 
this is the first MoM truly powered by machine learning methods.  
It opens enormous software and hardware resources for MoM and 
related algorithms that can be applied to signal integrity and 
power integrity simulations.   

Keywords—Method of Moments; Machine Learning; 
Capacitance Extraction; Artificial Neural Network. 

I.  INTRODUCTION  

Computational electromagnetics provides fundamental 
physical layer models for today’s electronic devices ranging 
from IC, packaging, board to connectors.  Numerous methods 
have been developed.  The method of moments (MoM) [1] is a 
popular approach applied to parasitic extractions, noise analysis, 
signal integrity, power integrity, etc [2-4]. 

Machine learning (ML) leads today’s IT technology.  It 
develops algorithms to learn from and make predictions on data 
[5].  It provides best predictions instead of accurate solutions.  
Hence, its applications to scientific computations are still very 
limited today.  However, due to huge consumer applications, 
machine learning technologies have received unprecedented 
attentions, which have created enormous computing resources 
ranging from software algorithms to hardware platforms.  
Hence, it is our motivation to build the direct connection 
between the machine learning and MoM so that we could use 
ML resources to serve scientific computing for signal integrity 
and power integrity modeling applications. 

In this paper, for the first time according to our knowledge, 
we reinterpreted MoM into a machine learning process using the 
artificial neural network (ANN).  Based on this new 
interpretation, the conventional MoM solving is turned into a 
machine learning training process.  Consequently, popular 
machine learning algorithms such as the multiple linear 
regression (MLR) are conveniently employed to train the model 
and obtain the intended solutions [6].   

The newly proposed algorithm is applied to parasitic 
capacitance extractions.  The computation employs the popular 
cloud computing platform – Amazon Web Service (AWS).  
Numerical tests demonstrate interesting performance 
advantages over the conventional MoM. 

  
Fig. 1. Artificial nerual network representation of the machine learning based 
MoM (ML-MoM). ߩ௡  is the unknown (charge density),	 ௠ܸ , is the excitation 
(potential) of the MoM equation, and 	ܵ௠௡ is the matrix coefficient of MoM. 

II. FROM MOM TO MACHINE LEARNING PROCESS 

For the capacitance extraction, the MoM matrix equation can 
be established based on the integral equation [7].  If the surface 
charge density ߩ is discretized using the pulse basis function and 
the corresponding conductor potential vector is represented by ܸ, the result matrix equation is 

൥Sଵଵ … Sଵ୒⋮ ⋱ ⋮S୑ଵ ⋯ S୑୒൩ ൥ρଵ⋮ρ୒൩ = ൥Vଵ⋮V୑൩      or      ܁ ∙ ࣋ =  (1)      ܄

where the elastance matrix S has the dimension M by N. M is 
the number of field point, N is the unknown number for charge 
density vector ࣋, and the potential vector V has N terms.  The 
elastance element Smn could be weighted using basis at testing 
field positions.  For convenience, the point correlation is 
employed in this work.  Green’s function is used as the 
integration kernel for computing Smn. 

When M=N, Eqn (1) is the conventional MoM matrix 
system.  Direct or iterative methods are available to solve (1) 
based on different scales.  After obtaining the charge density, 
Maxwell capacitances can be obtained using summed charges 
on each conductor [7]. 

The starting point of our new algorithm is to reinterpret 
MoM into a training model, as shown in Fig. 1.  It is a single 
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layer perceptron (neural network structure).  The matrix element 
Smn is used as the input training data.  The charge density 
unknown ߩ௡ is used as the weighting coefficient.  The potential 
Vm is the output of the neural network.  Hence, solving MoM 
becomes a new process:  feed Smn to train the model.  After 
training, we can get the accurate estimation of the weighting 
coefficient ߩ௡.  It is obvious that more training data will produce 
better accuracy in the final solution.   Hence, when the new 
algorithm is used, more field points than source points are 
needed, which means M>N.  Hence, the MoM solving process 
becomes a machine learning training process. 

III. MACHINE LEARNING FOR SOLVING MOM CAPACITANCE 

EXTRACTION 

There are enormous highly developed software resources for 
machine learning algorithms and hardware resources for 
machine learning computations.  

Among many popular machine learning algorithms, the 
multiple linear regression (MLR) is employed for parasitic 
capacitance extractions [8][9].  MLR intrinsically reduces the 
least square error by using the following cost function ࢿ௅ௌ = arg݉݅݊ఘ ∑ ଵଶ ሺࡿ௠ ∙ ࣋ − ௠ܸሻଶெ௠ୀଵ                                (2) 

where ࡿ௠  is mth row of S matrix.  Regularization can be 
introduced to further improve the performance of MLR.  The 
regulation by nature represents the extra penalty determined by 
the prior knowledge ࢿ௅ௌି௥௘௚ = arg݉݅݊ఘ ∑ ଵଶ ሺࡿ௠ ∙ ࣋ − ௠ܸሻଶ ൅ ఒଶெ௠ୀଵ ்࣋ ∙ ࣋       (3) 

where ߣ is the regularization coefficient. For example, if it is 
known beforehand that the linear model is highly likely to over-
fit the model, calculated ࣋	is likely to go higher in its magnitude 
than the true value.  ߣ will then be assigned with some positive 
value to increase the cost for achieving big values of 	࣋.  Instead, 
for under-fitting prior knowledge, ߣ  is usually chosen some 
negative value. 

The software used for ML-MoM capacitance extraction in 
this paper is Python [10]. The preference over other candidates 
is due to its adaptability towards various systems and well-
developed machine learning packages and libraries. Most 
numerical operations are completed using Numpy and Scipy 
Libraries [11], and parts involving machine learning are realized 
with Scikit-Learn – a most popular machine learning library in 
Python [12]. 

Among many popular hardware platforms for machine 
learning, we use Amazon Web Service (AWS) – a cloud-
computing service suite providing a broad range of machines 
with a wide range of configurations. The machine used is m4 
instance, the latest generation of General Purpose instance 
offered by AWS [13]. It is configured with 16 vCPUs and 64 
GB memories. To test hypothesis over a wide range of matrix 
sizes, another 200 GB volume is attached to the machine. 

IV. NUMERICAL EXAMPLES 

The first example is to extract capacitances of power planes 
as shown in Fig. 2.  Three coupling plates (Vdd, Vcc, and GND) 

are located at two layers. The ground plate has a dimension of 
12×12 mm2, and the distance between two layers is 0.2mm.  
Pulse basis is used for the charge density discretization.  First the 
conventional MoM and the newly proposed ML-MoM based on 
MLR training are compared in the capacitance extraction.  The 
comparison result and relative error analysis are shown in Fig. 
3.  Interesting advantages of the proposed new algorithms over 
the traditional MoM are observed in terms of accuracy and 
memory usage.  Detail discussions will be presented at the 
conference.  It does not always say ML-MoM is superior over 
MoM at this moment.  But it clearly states the efficiency and 
feasibility of ML-MoM. 

  

 (a)                                              (b) 

Fig. 2.  Power-ground plane structure for capacitance extraction. (a) vertical 
view, (b) plane view   

 

  
Fig. 3. Capacitance comparison between MoM and ML-MoM. N is the 
number of charge discretization, and M is the field testing point number. 

The second example demonstrates the effectiveness of 
regularization and increasing number of the training data.  
Figure 4 shows two scenarios: over-fitting and under-fitting.  
Over-fitting is more likely to occur when the model itself is less 
complicated (low rank), whereas under-fitting occurs when the 
model is oversimplified. 

In Fig. 4 (a), two plates are placed perpendicular to each 
other at a distance of 2 µm. The upper one carries 1V voltage 
and the lower one is grounded. Quantity of interests is the charge 
distribution over the upper plate. To make fair comparison, we 
set the converging point at N= 9216 for three lines as the 
reference value of total charge on the upper plate. 
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At a first glance, it is obvious that ML-MoM (blue starred) 
has little change as N (number of unknowns) increases. This is 
because over-fitting occurs for relatively simple model which 
doesn’t need too many variables to capture useful features. 
Compared with ML-MoM, traditional MoM (red circle) 
produces results larger than the reference value. This 
phenomenon agrees with the fact that since MoM has number of 
data equal number of variables, thus requiring larger trained 
weights to bend the trend of curve so that it could perfectly fit 
all information contained in the square matrix, including 
irrelevant noises or minor inaccuracies. The regularized ML-
MoM, on the other hand, is much closer to the true value 
comparing traditional MoM. Given a relatively high 
regularization coefficient, getting a large value training 
coefficient becomes costly.  Regularized ML-MoM forces 
training process to ignore certain minor deviation in the data 
from the general trend of the curve.   

In Fig. 4 (b), a same structure to the previous example is 
used.  The converging point (N= 4032) of three planes is set as 
reference value. This time, the under-fitting is the source of error 
in final results.  The key to increase accuracy given under-fitting 
is to include more features from the model. As a result, despite 
ML-MoM has more observation, enhancing N  (the source 
discretization) still increases accuracy effectively. Another 
difference between over-fitting and under-fitting in ML-MoM is 
the sign of regularization coefficient. In over-fitting, ߣ is chosen 
to be a positive number. It represents the punishment for 
capturing minor features as prior knowledge determines them 
likely to be noise.  Whereas in under-fitting, ߣ is chosen to be 
negative.  It means that the training process will be rewarded 
whenever it amplifies the minor features given the prior 
knowledge. 

Even though the regularized ML-MoM does improve the 
accuracy, it requires prior knowledge about the model and a 
proper choice of ߣ . Both are not trivial to obtain in reality, 
making regularized MoM less applicable.  On the other hand, 
ML-MoM avoids such concerns and offers a more viable 
solution.  

V. CONCLUSION 

In this paper, a novel machine learning based method of 
moment (ML-MoM) is introduced for the parasitic capacitance 
extraction.  By reinterpret MoM using artificial neural network, 
the conventional MoM solving is changed into a standard 
machine learning training process.  Further taking advantages of 
machine learning algorithms such as MLR, software resources 
such as Python, and hardware resources such as Amazon Web 
Service, parasitic extractions can be executed effectively 
through modern machine learning technologies.  The proposed 
method opens a new gateway for modern computational 
electromagnetics (CEM) toward electromagnetic compatibility 
(EMC).  Many new opportunities and possibilities could start 
from this point. 
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(a)  

 

(b) 

Fig. 4. Comparison among MoM, ML-MoM and ML-MoM with regulation. 
(a) Over-fitting case: ML-MoM has 9216 observation point; ܰ varies from 64 
to 9216; regularzied ML-MoM has a regularization coefficient ߣ  = ݁଻ . (b) 
Under-fitting case: ML-MoM has 4032 observation point; ܰ varies from 63 to 
4032; regularzied ML-MoM has a regularization coefficient ߣ = −݁ି଻.  
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