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Abstract—Evaluating the robustness of integrated circuits (ICs)
against noise and disturbances is of crucial importance in signal
integrity (SI) applications. In this work, the addressed challenge
is to build a software-based framework allowing for automated
detection of failures and fast simulation-based evaluation of de-
signs. In particular, these tasks are here addressed using Anomaly
Detection (AD), a branch of Machine Learning (ML) techniques
focused on identifying erroneous or deviant data. In the proposed
framework, the machine learning model only requires the time-
domain waveforms and no additional knowledge about the circuit
nor about the errors to be identified. Specifically, a two-step
approach to detect anomalous behaviors in output waveforms of
digital ICs is proposed, comprising a first phase where machine
learning models are trained to learn relevant features describing
the data and a second one where those features are used to
identify anomalies with unsupervised or semi-supervised anomaly
detection techniques. Two relevant application examples validate
the performance and flexibility of the proposed method.

Index Terms—Signal Integrity, Machine Learning, Anomaly
Detection.

I. INTRODUCTION

In recent years, signal integrity (SI)-aware design method-
ologies have gained importance, due to the increase in signal
bandwidth and the high level of integration and miniaturization
of integrated circuits (ICs). Often, time-domain simulations are
the preferred method for the assessment of SI performance of
modern ICs, allowing to analyze eye diagrams, noise or jitter.

In this context, the main goal of this contribution is to
introduce a Machine Learning (ML)-based framework for
automated assessment of errors for SI applications, which
can be easily integrated in the design phase. Recently, ML
techniques have also been used successfully for related appli-
cations, such as error detection in electromagnetic compatibil-
ity tests [1], performance assessment of high-speed links [2]
and uncertainty quantification for high-speed channel signaling
[3]. This paper is an extension of preliminary results in [4],
where a novel Anomaly Detection (AD)-based approach was
introduced to detect errors in the output of a simple digital
circuit affected by jitter.

The proposed AD-based methodology to detect errors in SI
applications follows a two-step approach:
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1) First, ML models based on Representation Learning
[5] are used to learn relevant features from the output
waveform. This corresponds to projecting the input data
onto a new latent representation, referred to as feature
space.

2) Then, an AD algorithm is used to detect anomalous data
in the new feature space.

The rationale behind this approach is to exploit the representa-
tional power of Machine Learning (ML) models that are capa-
ble of automatically learning features from high dimensional
data, such as time-series data, to obtain a lower-dimensional
and relevant representation, where anomalies are easier to
identify and locate. To this end, the solution employs AD, a
specific branch of ML techniques focused on the identification
of unusual events in data, typically due to errors or failures.
Unlike traditional predictive ML techniques, where the goal is
either classification or regression to estimate the value of a spe-
cific target (which is known at training time), AD techniques
involve characterizing the normal behavior of a system without
any guidance, i.e. without annotations (labels) of possible fail-
ures. In these conditions, AD techniques rely on unsupervised
or semi-supervised learning [6] to detect anomalies. In SI
applications, these correspond to undesired behavior of the
signals under study, for example due to crosstalk effects, jitter
or noise. In this text, anomaly refers to significant disturbances
in the signal as detected by an AD model, while error refers to
behaviors satisfying specific error criteria. The approach and
results presented in [4] are extended here by generalizing the
methodology to both unsupervised and semi-supervised AD
techniques, together with a detailed analysis of the modeling
technique w.r.t. hyper-parameters optimization and validation,
as well as an in-depth discussion of the results and limitations
of the approach. Moreover, an additional example is introduced
to validate the approach and illustrate how this can be directly
integrated in the design phase for fully automatic design
optimization tasks. Specifically, the challenge addressed is to
build a solution that does not require a priori knowledge on the
circuit design or the types of failures to be expected. Moreover,
no recalibration is required for each new simulation. The paper
is organized as follows: Section II describes in detail the
proposed methodology, which is then validated by two relevant
application examples in Section III. Finally, conclusions are
drawn in Section IV. Appendices A and B provide more in-
depth details on specific steps of the methodology.
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Fig. 1. An overview of the proposed methodology: training phase and
anomaly detection phase.

II. ANOMALY DETECTION FRAMEWORK

A. Notation and Terminology

First, some notations are introduced that will be used
throughout the paper, as well as some common terminology.
In general, raw data (corresponding to the time-domain output
waveform of a circuit) is referred to as T, the processed data
used to train and evaluate the ML model as XN×L and the
new feature space learnt by ML models as ZN×F. Here, N is
the number of subsequences extracted from the data T during
preprocessing and L is their length, while F is the dimension
of the feature space, as described later. Each subsequence is
also referred to as a sample in the input space. The AD model
computes anomaly scores S = a(Z) for every input sample in
Z.

B. Methodology

The proposed methodology is illustrated schematically in
Fig. 1. It consists of two main phases: (1) training a ML model
to learn features from the data and (2) applying AD techniques
to detect errors using the learnt features.

As a preprocessing step the continuous signal T (raw time-
series data) is split into multiple subsequences of a fixed length
L using a sliding window approach. Consecutive sequences
are extracted by moving a window of size L over T. The
stride of the window is typically shorter than L, so to extract
overlapping sequences and maximize the amount of training
data available. Eventually, a dataset XN×L is generated in a
tabular format, with each row corresponding to a subsequence
of length L of the original data.

1) Training Phase – Unsupervised Feature Learning: The
next step is to use XN×L as input for a representation learning
algorithm that learns a new lower-dimensional feature space
ZN×F. Autoencoders [5] are ML models that can be used for
this purpose, since they are able to project (encode) the input
data X onto a lower-dimensional representation Z, that is then
used to map the inputs back (decode) onto the original space.
An autoencoder is trained to reconstruct the original data via

a suitable low-dimensional representation with minimal loss
of information (reconstruction loss). To do this, the learnt
feature space needs to conserve and summarize the relevant
characteristics of the input data. The encoding operation is
here referred to as e(·), while d(·) is the decoding operation:

Z = e(X)

X̂ = d(Z)
(1)

and X̂ is the reconstruction of X computed by the autoencoder
using Z. In practice, both encoder and decoder are Neural
Networks that have one or more hidden layers. As shown
on the right side of Fig. 1, an autoencoder has one input
layer, one (or more) hidden layer(s) (also referred to as
bottleneck layer) responsible for learning the feature space Z,
and one output layer. Once trained, new data can be fed to
the autoencoder and the corresponding feature space can be
extracted from the bottleneck layer. A non-linear activation
function (typically the sigmoid function) is used in the hidden
layer, making the learnt features non-linear transformations of
the inputs. A variation of classical autoencoders is used, called
Contractive Autoencoder (CA) [7]: a penalty term is added to
the reconstruction loss during training to make the network
robust to small changes in the input data. The objective
function of the optimization during training becomes:

min
We,Wd,be,bd

L(X, d(e(X))) + λ||Je(X)||2F . (2)

Here, We,Wd,be,bd contain the parameters (weights and
biases) learnt by the autoencoder, X is the input data and

e(X) = Z = sigmoid(We ·X + be) (3)

d(e(X)) = X̂ = sigmoid(Wd · e(X) + bd) (4)

are the encoding and decoding function respectively. Note
that two terms appear in (2): the first is the reconstruction
loss L(·), typically the Mean Squared Error (MSE), and the
second is a penalty term that enforces robustness of the learnt
representation against small changes in the input data. In
particular, the latter is formed by the product of a constant
λ ∈ R>0 and the Frobenius norm of the Jacobian of the
encoding function:

||Je(x)||2F =
∑
i,j

(
∂zj(x)

∂xi

)2

(5)

where zj(x) is the jth learnt feature, xi the ith element in the
input sample x ∈ X with representation z ∈ Z.

As indicated in Fig. 1, in the proposed modeling framework
error-free data (when no disturbances are present) is used as
input to train a CA by optimizing the objective in (2).

2) Anomaly Detection Phase – Detecting Errors: After
training, new data Xtest is simulated and fed to the network to
extract the latent representation Ztest. Then, the values of Ztest

are analyzed to detect errors. As no further training is needed
for this part, the data is only passed through the encoder (using
the learnt weights during training) to extract the features. An
AD algorithm can then be used to detect anomalies in Ztest,
by looking for abnormal samples in the feature space. Since
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the model is trained to characterize anomaly-free data X, it can
be expected that an anomalous subsequence will be mapped
onto a different region in the learnt feature space. In general,
the output of an AD algorithm is an anomaly score S, a
positive real number indicating how deviant each observation
is. Lower scores indicate that a subsequence does not contain
anomalies, whereas scores significantly higher indicate that
errors occurred. To obtain a binary indicator 0 or 1 whether a
subsequence is normal or anomalous, a suitable threshold τ is
defined on the maximum score. In practice, τ is a parameter
of the method and it can be tuned to find its optimal value.

In this contribution, two flavors of AD are explored, unsu-
pervised and semi-supervised. In the former, a model is trained
on unlabeled data with no additional information (if or how
many anomalies occur): typically, the assumption here is that
anomalies are few and significantly different from the majority
of the data, considered as anomaly-free. In this work, the Local
Outlier Factor (LOF) algorithm [8] is used for unsupervised
AD. The main assumption of LOF is that anomalies lie in
areas of lower density of the input space compared to normal
samples. It is essentially a neighbors-based approach, since
the density of each input is computed based on the density
of the nearest neighbours of each data point. It outputs a
score ∈ [1,+ inf), where 1 indicates that no anomalies are
present and scores > 1 mark potential anomalies. In the semi-
supervised scenario, the AD model is trained on anomaly-free
data (hence it has knowledge on what normal data should look
like) and later used to detect anomalies in new data. While
the unsupervised approach is more flexible and requires no
training, the assumptions behind it do not always hold. In
this case, semi-supervised approaches are preferred, at the
cost of the additional computing time required for training.
Here, LSAnomaly [9] is used. It is a probabilistic AD method
to identify outliers, given a training set of anomaly-free
samples. To do this, LSAnomaly embeds a Least Squares-
based classification into a probabilistic framework. Two hyper-
parameters need to be set: a regularization parameter (ρ) that
controls the sensitivity to anomalies and σ, the length scale
parameter of the kernel used in the model, which controls the
smoothness of the decision boundary. In our experiments, the
value of ρ was set to 0.1 according to the heuristic proposed
in [9]. The value of σ was set used the default initialization
using k-NN proposed in [9] for the PAM-4 signal, while σ = 1
was chosen for the binary signal. This difference is motivated
by the fact that the distance between various sub-sequences
is in average smaller for the binary signal, given that it is
less dynamic. Once LSAnomaly is trained, it can be used to
obtain anomaly scores on new data. Unlike LOF, the scores
are bounded in the range [0, 1] and can be directly interpreted
as anomaly probabilities.

III. NUMERICAL EXAMPLES

Two application examples are considered to validate this
AD-based method. The first example presents a detailed de-
scription of the training of a CA to be used for error detection
in time-domain signals. The second example illustrates how
the AD framework can be used effectively in the design
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Fig. 2. Example A. The digital counter circuit under study.
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Fig. 3. Example A. The latent dimension F is chosen according to the
performance (MSE) on the validation set for Q1 (top) and Q2 (bottom).

phase to solve SI problems, and how it can be integrated
in common design activities, such as optimization. The two
examples prove the flexibility of the method, which can be
applied to analyze different systems, i.e. a digital circuit in
the first example and a channel with distributed elements in
the second one. Moreover, it can be employed to evaluate the
impact of different undesired effects, i.e. jitter in the first and
crosstalk in the second example.

Example A: Anomaly Detection under Jitter Effects

The circuit under study is a digital counter [4], as shown in
Fig. 2. It uses a dual D-type flip-flop based on the 74HC74
datasheet [10], and has been analyzed in ADS1. It has two
output signals (Q1 and Q2) with frequency equal to f/2 and
f/4, respectively, where f is the clock frequency. The period
of the clock is 200 ns and its rise/fall time is 5 ns. Furthermore,
the clock is affected by Gaussian jitter having a standard
deviation of 20 ns. The goal is to apply the unsupervised
advocated method to detect problems on the outputs caused
by the clock jitter. The digital counter is considered as robust
if the variation ∆T of the period of Q1 and Q2 with respect
to the nominal value (without jitter) satisfies:

∆TQ1
= ±40ns, ∆TQ2

= ±80ns

Note that this corresponds to a variation not higher than 10%
of the nominal value.

1Advanced Design System, Keysight Technologies, Santa Rosa, CA, USA.
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Fig. 4. Example A. Results of the unsupervised AD with LOF, with the anomaly scores computed. For both Q1 (top) and Q2 (bottom), the output waveform
is shown above the corresponding anomaly scores. Regions where the defined error criteria are satisfied are highlighted in red. The threshold τ is shown as
a dashed green line.
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Fig. 5. Example A. The model identifies disturbances in the input data,
without knowledge of the specific ad-hoc error criteria. For this reason, it
also identifies pulses that have an acceptable total length, but slightly wrong
high- and low-level duration.

1) Training Phase: To detect if the condition above is
satisfied, a CA is first trained to learn relevant features from Q1

and Q2 using data where no anomalies are present. To generate
this data, a simulation is performed in the range [0, 80] µs
in the absence of clock jitter. In particular, only the interval
[40, 80] µs is retained, i.e. once the IC is operating at steady
state. During preprocessing, both Q1 and Q2 are normalized
to [0, 1]. Then, the sliding window mechanism is applied to
the data and extracts subsequences of length L, as described
in Section II-B. The value of L is set to the period of the
signals: 800 for Q2 and 400 for Q1, since both signals are

sampled with a fixed time-step of 1ns. This ensures that the
subsequences include potential anomalies on the period length.
Moreover, the subsequences are extracted with a 99% overlap
to obtain more data for training. Next, a CA is trained to
reconstruct each subsequence, independently for Q1 and Q2,
by optimizing the objective in (2) using the Adam optimizer
[11], which is an extension of gradient descent. The training
is done over several epochs, where one epoch corresponds
to a full pass on the training data. In particular, the hyper-
parameters of the CAs are set as follows: 1 hidden layer
with sigmoid activation, F hidden neurons in the bottleneck
layer; 250 training epochs; λ = 10−4 in (2). Following [7],
in our experiments a sigmoid activation was preferred for the
hidden layer over other options (e.g. tanh or ReLu), since it
produces outputs in the bounded domain [0, 1]. Now, choosing
the dimension F of the latent space is crucial to successfully
train the CA. If F is not sufficiently large, the model may not
be able to reconstruct the data well enough. Alternatively, if
F is too large, the model will learn a meaningless mapping
(e.g. the identity function when F = L) and will not be able
to generalize to unseen data. To choose a good value of F ,
part of the training data Xval is used as validation set. This
set is removed from the training data and it is only used after
training to evaluate the model performance. Typically the size
of Xval is chosen as 20% of the available training data. We
can then define a set of k candidate values {F1, . . . , Fk} and
pick the one with the best performance on Xval. To ensure that
X and Xval are significantly different, small random noise was
added to the training data, while keeping the validation data
unchanged. Fig. 3 shows the best score (measured as MSE)
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obtained on the validation set for several values of F , for
both Q1 and Q2. For the former, we can see how the MSE
significantly drops when at least F = 8 features are used,
while this is insufficient for the latter. By choosing F = 16
one already obtains a very low MSE on the entire validation
set. Note that increasing F beyond 8 and 16 respectively
only slightly improves the performance. In practice, a lower-
dimensional feature space is preferred. Once the best F is
chosen, the model is trained again on the full training data X.

2) Unsupervised Anomaly Detection: Once the CAs are
trained, new data Xtest (with clock jitter) is fed to the model to
retrieve the new F -dimensional representation Ztest. LOF is
then used to detect anomalies in this representation. LOF has
one main parameter: the number of neighbors n. A too large n
may result in multiple undetected anomalies that are similar to
each other. Using too few neighbors may cause isolated small
clusters of anomalies to be overlooked. In general, it is not
possible to know a priori the value of n that leads to an optimal
detection result. It is suggested in [8] to use a range of values
for n, as a heuristic. Specifically, the lower bound of the range
(denoted nLB) should be chosen as “the minimum number of
objects a cluster has to contain, so that other objects can be
local outliers relative to this cluster” [8]. In this case, given
the regularity of the output waveform and the fact that many
subsequences will be overlapping, this value can be assumed
to be at least 100, corresponding to the number of (partially)
overlapping neighbours of each subsequence. The upper bound
(denoted nUB) should be “the maximum number of close by
objects that can potentially be local outliers” [8]. The choice
for nUB is less straightforward, but given the assumption that
there are few anomalies in the output, this value is set to 400.
Considering that the number of extracted subsequences for
Q1 is 9884, the chosen nUB corresponds to approximately
4% of the total size. For Q2, the number of subsequences is
4888 (since the window length is doubled), and therefore the
range is halved as n ∈ [nLB/2, nUB/2]. In both cases, the
range is scanned with a step size of 100. Once the anomaly
scores S(n) are computed for various values of n, these are
aggregated using the maximum obtained, as suggested in [8]
to obtain the final scores S∗Q1

and S∗Q2
:

S∗Q1
= arg max

n
S(n), with n ∈ {100, 200, 300, 400}

S∗Q2
= arg max

n
S(n), with n ∈ {50, 100, 150, 200}

Fig. 4 shows the AD results on both outputs Q1 (top) and
Q2 (bottom) in the interval [40, 80] µs for both signals. The
waveforms are shown on top, and the scores S∗Q1

and S∗Q2
at

the bottom. Since each score is associated with a subsequence,
rather than a single point, the score of a point p is computed
as the maximum score between all subsequences containing p.
The areas where the error criteria defined in Section III are not
satisfied are highlighted in red in the bottom plots. For both
Q1 and Q2, the anomaly score is higher in these highlighted
regions. Since the method also identifies other disturbances in
the signals, a threshold τ (represented as a dotted horizontal
green line) needs to be picked to isolate (ideally) all and only
the critical regions. Because the method is fully unsupervised,
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Fig. 6. Example B. (a) High-speed channel. (b) Cross section of the three
coupled microstrips.

it is not possible to distinguish a priori between a tolerable
disturbance or an error, given that specific error criteria are
defined. Therefore, for optimal retrieval, a threshold can only
be defined a posteriori. In this case, the threshold τ was picked
to isolate regions containing errors, i.e. for Q1, Q2:

τQ1,Q2
≥ Sj

Q1,Q2
, ∀j ∈ {regions containing errors}

This choice was indeed possible for both cases, meaning that
the model is able to detect all errors without false alarms.
Another option for the detection is to sort all observations by
their anomaly score, and flag the K top scoring regions as
errors (if e.g. K is known or can be estimated a priori). It is
also worth investigating some regions with an elevated score
(yet, below the threshold), as they indeed contain disturbances,
even though they do not violate the specified criteria. For
example, the region around 42µs for Q1 with an high score is
shown in detail in Fig. 5 (top). While the total period length
does not differ more than 10% from the nominal value, the
high level lasts longer than the expected T

2 for the 2nd and
3rd pulse shown. A similar observation can be made about
the region in Q2 around 70µs, as shown in detail in Fig. 5
(bottom).

Example B: Anomaly Detection-driven Design Optimization

In this example, the high-speed channel shown in Fig. 6
is considered. A differential PAM-4 signal at 20Gbit/s and
a binary (two-levels) digital signal at 1GBit/s are sent into
three coupled microstrips. The PAM-4 driver is a behavioral
model [12] and generates a pseudorandom bit sequence, while
an ideal generator is used to obtain the binary pseudorandom
signal. The channel is formed by three coupled microstrips,
whose cross-section is shown in Fig. 6(b). The conductors have
length l = 5cm and width w = 120µm. The spacing between
the microstrips is s1 = 200µm and s2 = 100µm. The substrate
is a Roger RT/duroid 5880 with relative permittivity ε = 2.2
and thickness h = 127µm [13]. The scattering parameters of
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the microstrips are simulated in ADS, and each microstrip is
terminated by a resistor R = 50 Ω and a capacitor C = 0.25
pF connected in parallel, mimicking the input impedance of a
receiver [14]. Time-domain simulations are performed in the
circuit solver of ADS. In order to reduce the crosstalk effect
between the binary and PAM-4 signals, the spacing s1 between
the microstrips where these signals are injected is twice as
large as s2, i.e. the spacing between the two microstrips
for the differential PAM-4 channel, as shown in Fig. 6(b).
Nonetheless, the interference of the high-speed PAM-4 signals
heavily degrades the binary one. Hence, the objective is to
design a suitable filter, as indicated in Fig. 6(a), to filter out
high frequency components of the interference of PAM-4 from
the received binary signal. However, adding the filter causes
a mismatch in the output termination. It is important to verify
that, due to the crosstalk, undesired reflections do not couple
back into the PAM-4 channel, degrading SI.

3) Training Phase: As explained in Section II, autoen-
coders are used to learn the lower-dimensional representation
ZBIN and ZPAM from the output of the digital XBIN and
PAM-4 signal XPAM, respectively, which are preprocessed
as discussed in Section III-1. Since the PAM-4 signal is
differential, we have concatenated its (flipped) negative part
to the positive one, in order to obtain single time-series
data. Next, these new representations are then fed to an AD
algorithm to identify abnormal subsequences.

4) Anomaly Detection and Design Optimization: Once the
latent features are learnt, AD methods can be used to identify
deviant subsequences in the output waveforms. In contrast to
the previous example, we can no longer assume that only
a few anomalies will be present in the data. Therefore, in
this case we apply the CA models to the training data to
retrieve the learnt representations ZBIN

train and ZPAM
train and

later we use these to train a LSAnomaly model, for semi-
supervised AD. In this case, the obtained anomaly scores are
used to guide the optimization in a second modeling step.

10 50000
Rf ( )

0.25

10.00

Cf (pF)

Initial design space (LHC)

Optimization samples

Optimum

80

60

40

20

0

20

sBIN (%)

10 50000
Rf ( )

0.25

10.00

Cf (pF)

Valid

Invalid

Fig. 8. Example B. The various (Rf , Cf ) sampled during initial design (21
samples, shown as circles) and optimization process (50 samples, shown as
triangles). On top, the color represents the score on the binary output sBIN .
The plot on the bottom shows the validity of the same sampled pairs w.r.t the
constraint on the PAM-4 in (6).

The goal is to find the optimal design of the filter components
(Rf and Cf ) to improve the signal quality. Specifically, the
desired filter should improve the output of the binary signal
without degradation of the PAM-4 output. Several optimization
algorithms can be used in this framework, because the anomaly
scores define the cost function to be minimized. Among others,
we chose Bayesian Optimization (BO) [15]. Specifically, the
implementation used for this work is GPFlowOpt [16]. A
detailed description of BO and its implementation in this work
can be found in Appendix A. As illustrated in Fig. 7, at each
iteration k, new values of Rk

f and Ck
f are selected using BO;

these are then used to run a [0− 5]ns simulation and generate
the outputs XBIN

k and XPAM
k . Next, the trained autoencoders

are used to extract ZBIN
k and ZPAM

k and finally the anomaly
scores are computed using LSAnomaly. These scores sBIN

and sPAM are also normalized w.r.t the scores obtained when
no filter is used (as detailed in Appendix B), hence they can be
interpreted as improvement/degradation on the signal quality
introduced by the filter.

Formally, the objective of the optimization can then be
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R = 30008 Ω
C = 8.05 pF

R = 10 Ω
C = 2.2 pF

R= 48695 Ω
C= 0.57 pF

𝑅𝑓 (Ω)

𝐶𝑓 (pF)

Fig. 9. Example B. Illustration of some output waveforms obtained during the optimization. The orange dashed curve represents the ideal output and the
blue line indicates the actual output.

formulated as:
max
Rf ,Cf

sBIN

subject to sPAM ≥ 0
(6)

i.e. the goal is to maximize the improvement on the binary
output, under the constraint that the PAM-4 signal does not
degrade (i.e., if sPAM < 0). Note that in practice the
introduction of the filter is not expected to improve the PAM-4
filter, so optimal feasible regions will have sPAM ≈ 0. The
following settings were chosen for the optimization:

• Rf ∈ [10, 50000] Ω, Cf ∈ [0.25, 10] pF
• Initial design: 21 (Rf , Cf ) samples on Latin Hyper Cube

(LHC)
• 50 optimization iterations

The initial LHC design is used to identify promising regions
of the design space. At the end of the 50 iterations, the best
performing feasible (Rf , Cf ) value is chosen as optimum. It is
important to remark that only few periods of the binary signal
are needed to evaluate the impact of the chosen (Rf , Cf )
configuration in terms of anomaly score (given that the PAM-
4 is 20 times faster). Hence, the time-domain simulations can
be performed over a small range, namely [0 − 5]ns, thereby
increasing the efficiency of the proposed approach.

Fig. 8 (top) illustrates the results of the optimization pro-
cess: the 21 samples for the initial design space are shown
as circles, and the values sampled during the 50 optimization
iterations are shown as triangles. The color of each sample
indicates the performance of the filter on the binary output.
Compared to the situation without filter, red means improve-
ment while blue indicates a degradation of the signal quality.
The optimum (R∗f = 48695 Ω, C∗f = 0.57 pF) is marked
with a green cross. In Fig. 8 (bottom) each sample is instead
colored according to its validity: green if the constraint on the
PAM-4 is satisfied, else orange. As illustrated, the BO strategy

quickly finds an optimal feasible subregion of the space, where
the sampling will further focus on.

Fig. 9 shows some of the sampled values in the parameter
space and the corresponding 5ns output waveforms, obtained
using that setting for the filter. In these plots, the ideal output
and actual output are shown with dashed orange lines and
solid blue lines, respectively. It is found that the optimization
leads to output waveforms that are smoother and less noisy,
as the corresponding anomaly score decreases. Furthermore,
it is clear that a bad filter design might lead to worse results
than not using any filter at all. The optimum corresponds to
an improvement of the anomaly score of the binary signal
w.r.t. the case without filter of around sBIN = 11.4%, with
no degradation on the PAM-4 (sPAM = 0). Even though
the exact value of this improvement is somewhat arbitrary
(indeed, it depends on the definition of anomaly score used),
it highlights how the AD-driven approach achieved the main
goal of designing a filter to obtain a significantly better binary
output without degrading the PAM-4 output.

Since the computed improvements depend on the way the
scores are computed, a comparison with the eye-diagrams
simulation is performed. This gives a more concrete and
immediate appreciation of the actual improvement given by
the filter. In Fig. 10, a comparison of the eye-diagrams for
both binary and differential PAM-4 signal obtained with R∗f
and C∗f versus the ones computed with no filter is shown.
The diagrams are obtained from a transient simulation in the
range [0 − 1] µs, corresponding to 1000 and 20000 symbols
for the binary and PAM-4 signal respectively. As illustrated,
the filter clearly improves the eye of the binary output, without
degradation of the differential PAM-4 signal. In particular, the
Eye Width (EW) and Eye Height (EH) for the binary signal
obtained with and without the optimized filter are indicated
in Table I. While the EW is almost identical in both cases
(difference of 18 ps), the difference in terms of EH leads
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TABLE I
EYE HEIGHT (EH) AND WIDTH (EW) OF THE BINARY SIGNAL WITH AND

WITHOUT THE FILTER.

No Filter Optimized Filter
EH 0.260 V 0.357 V
EW 0.989 ns 0.971 ns

TABLE II
COMPUTATIONAL TIMES OF THE PROPOSED APPROACH EXPRESSED AS

AVERAGE TIME ± STANDARD DEVIATION ACROSS MULTIPLE RUNS.

Binary PAM-4
Training AE 48 s ± 98.3 ms 47 s ± 1.17 s
Training LS 154 ms ± 6.41 ms 1.57 s ± 42.5 ms

Detection: AE + LS 13.1 ms ± 98.4 µs 52.8 ms ± 1.45 ms

to a substantial improvement of the eye opening, thanks to
the designed filter. It is important to note that this time-
consuming eye diagram computation is only performed to
illustrate the improvement introduced by the approach and it
is not required by the proposed AD method. As a reference,
on our computer2 10 s are required on average to perform
a single time-domain simulation in the range [0 − 5] ns, as
needed by the proposed AD-based optimization, while about
57 minutes are needed for a simulation up to 1 µs, required
to compute the eye diagram. However, a direct performance
comparison with existing methods like the eye diagram is not
the main goal of this example, as these methods could also
be optimized for faster execution. Instead, here we showcase
how the AD-driven approach can be directly integrated in
modeling pipelines, and efficiently achieve competitive results
in different SI tasks and with different circuits. Finally, the
computational time of the proposed method is summarized in
Table II, which reports times for both training and AD phase.

IV. CONCLUSIONS

This paper described a novel machine learning-based frame-
work to automatically identify errors in output waveforms for
Signal Integrity applications. The solution is a fully automated
and software-based framework that only requires time-domain
output waveforms and can be easily integrated in the design
phase of modern ICs. Specifically, the proposed framework
uses autoencoders to learn relevant features from the outputs
of a digital circuit, where anomalies are then detected via AD
methods. The model needs to be trained on error-free data only
once, and can then be used to detect errors on every output
generated from the same circuit. Two relevant examples were
used to validate the approach: a digital counter affected by
clock jitter and a high-speed channel affected by crosstalk.
Results from both cases showed how the model was able
to successfully identify errors and disturbances in the new
outputs. Exploiting this diagnostic power, it was also shown
how our solution can be integrated in the design phase and
used to guide the optimization of a circuit in a fully automated
way, proving that AD techniques can be a valuable asset for SI-
aware design strategies. Finally, since the proposed approach

2Intel Core i5-6300HQ CPU @ 2.30GHz, 2304 Mhz, 4 Core(s), 4 Logical
Processor(s), 16GB RAM

requires error-free data, future work could focus on building
a completely unsupervised method, that jointly learns robust
features and performs AD on data containing anomalies, by
leveraging the rarity of these events.

APPENDIX A
BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) is a ML-based approach which
aims at finding the global optimum of an objective function g
over a bounded domain X :

x∗ = arg max
x∈X

g(x) (7)

where x is a vector of real-valued parameters and X is the
design space. BO uses a surrogate model of g that is easier
and cheaper to evaluate and an acquisition function, that is
used to select the next candidates to sample [17].

The main idea behind BO is to balance exploration (regions
with high uncertainty) and exploitation (region with high
scores) in the design space using the uncertainty of the
surrogate model. This balance is guaranteed by the acquisi-
tion function used [15], [18]. Since the objective (6) has a
constraint, in this work we jointly learn feasible and optimal
regions of the design space using the acquisition functions
Probability of Feasibility (PoF) [19] for the constraint and
Expected Improvement (EI) [20] for the objective, as in [21].

In our case, g is a function that given Rf and Cf returns
the anomaly scores sBIN and sPAM on the output of the
simulation using such filter values. In this work, we used
the GPFlowOpt implementation [16] of BO algorithms, as it
allows an easy integration with our software pipeline (Python
and Tensorflow [22]). The surrogate model(s) used are Gaus-
sian Processes [23], and a Latin HyperCube (LHC) design was
used as the initial design space.

APPENDIX B
COMPUTING AND NORMALIZING ANOMALY SCORES

In this appendix, we show in details how the scores SPAM
k ,

SBIN
k of all subsequences, outcome of the AD algorithm,

are aggregated and normalized to compute the scalar scores
sBIN
k and sPAM

k for binary and PAM-4 signals, used in the
optimization at each iteration k.

First, the average scores s are computed for binary and
PAM-4:

sBIN
k =

1

M

M∑
i=1

SPAM
i,k

sPAM
k =

1

N

N∑
i=1

SPAM
i,k

where M and N are the respective number of subsequences
extracted.

These raw scores sBIN
k and sPAM

k obtained are then nor-
malized w.r.t. the improvement or degradation compared to the
raw scores sBIN

nf , sPAM
nf obtained when no filter is used. The

normalization is done as follows:

sBIN
k = 100 ∗

sBIN
nf − sBIN

k

sBIN
nf

(8)
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Optimized 
filter

Without
filter

Fig. 10. Example B. The optimization process leads to a significant improvement in the eye opening for the binary signal, without degrading the differential
PAM-4 eye.

sPAM
k = 100 ∗

sPAM
nf − sPAM

k

sPAM
nf

(9)

If sBIN
k ≥ 0, the filter Rf , Cf introduced an improvement

(of the anomaly score) in the binary output, else a degradation.
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