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Combining LS-SVM and GP Regression for the
Uncertainty Quantification of the EMI of Power
Converters Affected by Several Uncertain Parameters

Riccardo Trinchero

Abstract—This article deals with the development of a proba-
bilistic surrogate model for the uncertainty quantification of the
voltage output spectral envelope of a power converter with several
stochastic parameters. The proposed approach relies on the com-
bination of the least-squares support vector machine (LS-SVM)
regression with the Gaussian process regression (GPR), but it can
suitably be applied to any deterministic regression techniques. As
a first step, the LS-SVM regression is used to build an accurate
and fast-to-evaluate deterministic model of the system responses
starting from a limited set of training samples provided by the
full-computational model. Then the GPR is used to provide a prob-
abilistic model of the regression error. The resulting LS-SVM+GPR
probabilistic model not only approximates the system responses
for any configuration of its input parameters, but also provides
an estimation of its prediction uncertainty, such as the confidence
intervals (CIs). The above technique has been applied to qualify the
uncertainty of the spectral envelope of the output voltage of a buck
converter with 17 independent Gaussian parameters. The feasibil-
ity and the accuracy of the resulting model have been investigated
by comparing its predictions and CI with the ones obtained by five
different surrogate models based on state-of-the-art techniques and
by the reference Monte Carlo results.

Index Terms—Confidence interval (CI), conductive emission,
Gaussian process (GP), least-squares support vector machine (LS-
SVM), machine learning (ML), switching converter.

1. INTRODUCTION

WITCHING power converters play a key role in modern

devices, since they provide an efficient and compact solu-
tion for power conversion. However, due to their time-varying
activity, the current and voltage waveforms at the input and
output stages of the converter are usually characterized by
high-frequency noisy components behaving as conducted emis-
sions (CEs). The effect of possible component tolerances on the
spectral content of the electromagnetic interferences generated
by the switching converter must be carefully investigated, es-
pecially during the early design phase, through statistical tools
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and methodologies for the uncertainty quantification in order
to avoid possible electromagnetic compatibility issues and thus
expensive redesign [1].

Monte Carlo (MC) simulation can be considered as a tra-
ditional technique for such kind of analysis. The underlying
idea is to run thousands of deterministic circuital simulations,
in which the components parameters are varied according to
their probabilistic distribution, in order to capture the actual
statistical behavior of the quantity of interest [2]. Despite its
simplicity, this direct approach turns out to be computational
expensive, since it requires a large number of simulations with
the full-computational model. Also, the MC approach turns out
to be a blind method, which does not provide any relationship
between the input parameters and the simulation output. In
addition, it is important to remark that, due to the nonlinear-
ity and time-varying activity of the switching converters, their
simulations must be carried on in the time domain, and the
CE spectrum is then calculated offline from the steady-state
waveforms via the Fourier transform, leading to a nonnegligible
computational overhead [3]-[5].

In the past few decades, advanced techniques such as poly-
nomial chaos (PC) expansion [6]—[8] and its advanced variants,
such as the least-angle regression PC expansion [9]-[11], have
been proposed as alternatives to the traditional MC analysis
for the uncertainty quantification in complex systems. The
above techniques allow building accurate and fast-to-evaluate
surrogate models for the statistical analysis of the outputs of a
generic nonlinear system affected by stochastic parameters. Re-
cently, several advanced general purpose regression techniques
belonging to the machine learning (ML) framework [12] have
been adopted for the surrogate modeling and the uncertainty
quantification in many research fields. In particular, the support
vector machine (SVM) [13], [14] and the least-squares support
vector machine (LS-SVM) [15] regression can be seen as a
viable and accurate solution for the surrogate modeling in high-
dimensional parameter space, sometimes providing an improved
accuracy with respect to well-established PC-based expansions
[16], [17].

All the above techniques provide as result a deterministic
model. This means that the resulting model can be interpreted as
a function, which allows predicting the system response for any
configuration of its input parameters, without any information
on the degree of confidence and the uncertainty of its predictions.
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In fact, the degree of confidence of the model prediction is
usually known only for the set of training samples used to build
it, but it is completely unknown when the model is evaluated
for a generic point in the parameter space. Indeed, when we
talk about deterministic models, one of the most challenge
questions that can arise is: “How can we predict the accuracy
of a model without running an equivalent simulation with the
full-computational model?”

Gaussian process regression (GPR) [18]—[25], also known as
the Kriging model, represents a possible solution to the above
challenging problem. The GPR belongs to the ML techniques,
and it allows building a probabilistic model of the nonlinear re-
sponse of a complex system starting from a limited set of training
samples. The resulting model not only provides a prediction of
the model output, but also allows estimating the uncertainty of its
prediction for any configuration of its input parameters, such as
the confidence intervals (CIs) [26]. Also, the GPR is so general
that it can be used to enrich any kind of deterministic model
resulting from a generic regression with the CI of its predictions,
thus providing the user with a probabilistic model [18], [25].
It is important to point out that there are several reasons why
one might wish to combine the GPR with an available explicit
regression model, instead of using the set of mean functions
available within the GPR, including interpretability of the model,
convenience of expressing prior information, and improved
accuracy [18].

This article presents an unconventional technique called LS-
SVM+GPR (preliminary results have been recently presented
in [27]) for the generation of a probabilistic model based on a
two-step procedure: 1) generate a deterministic model based
on an LS-SVM regression and 2) use the GPR to build a
probabilistic model of the LS-SVM regression error function.

The proposed modeling technique has been applied to the
uncertainty quantification of the spectral envelope of the output
voltage of a realistic buck converter as a function of 17 indepen-
dent Gaussian distributed parameters. The model predictions
are then compared with the ones provided by five different sur-
rogate models, i.e., the deterministic LS-SVM regression with
linear and radial basis function (RBF) kernel and the GPR with
constant, linear, and polynomial (order 2) trends, respectively.
The accuracy of all considered models will be investigated by
comparing their predictions with the results of an MC simulation
in LTspice [28].

The remainder of this article is organized as follows. Section I1
presents the proposed LS-SVM+GPR techniques. Section III
compares the accuracy of the proposed LS-SVM+GPR proba-
bilistic modeling with respect to the accuracy of five different
surrogate models based on the LS-SVM and the GPR for the pre-
diction of output voltage spectral envelope of the output voltage
of a buck converter as a function of 17 uncertain parameters.
Section IV concludes this article.

II. PROBABILISTIC MODEL BASED ON LS-SVM+GPR

This section focuses on the development of a probabilistic
surrogate model of the responses of a generic nonlinear function
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Fig. 1. Graphical interpretation of the errors ¢; used within the LS-SVM
regression optimization. For illustration purposes, a 1-D parameter space is
considered only.

in a high-dimensional parameter space based on the combination
of the LS-SVM regression with the GPR.

A. Step 1: Deterministic Model via LS-SVM Regression

Let us start considering the problem of fitting a given
set of training pairs Dy.;, = {(x;,:)}% ,, provided by a full
computational model M (i.e., y; = M(x;)), where y; € R and
x; € P with P C R? (d represents the problem dimensionality,
i.e., the number of uncertain parameters) via the following
LS-SVM regression My s sym(x) in the dual space [15]:

L
M(x) = Missvm(x) = > aiK(xi;,x)+b (1)
i=1

where a; € R are scalar coefficients, K (-, ) : R%*? — R is the
kernel function, and b € R is the bias term.

In summary, the LS-SVM regression allows building accurate
and fast-to-evaluate deterministic models of the response of a
generic high-dimensional nonlinear function M starting from a
number of L training samples [17]. This regression provides an
alternative interpretation to the standard SVM regression [13]—
[16] based on a more intuitive least-squares formulation [15], as
further explained at the end of this subsection. The most common
kernels used in both the SVM and the LS-SVM regression are
listed follows [13]-[15]:

1) linear: K(x;,x) = x! x;

2) polynomial of order ¢: K (x;,x) = (1 + x! x)?;

3) Gaussian RBF: K (x;,x) = exp(—||x; — x[|?/20?).

It is worth to remark that, different from the standard regres-
sion techniques (e.g., the plain least-squares regression), thanks
to the use of kernels, any SVM-based regression in the dual form
provides a model for which the number of unknowns to be esti-
mated during the training phase [i.e., the number of coefficients
«; in (1)] turns out to be independent from the dimensionality d
of the input parameter space. Indeed, the number of unknowns
for the regression is equal to the number of training samples L
used to train the model [14], [15].

The goal of the LS-SVM regression in (1) is to minimize the
squared of the error e; between the model output and the training
samples, where ¢; = M(x;) — Mrssym(x;) (see Fig. 1 for
a pictorial illustration in a one-dimensional (1-D) parameter
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space). The least-squares problem leads to the following linear
system, allowing to estimate the parameters «; and b:

TR

where a = [y, ..., az]T, y=[y1,...,yr]7, 1T =[1,...,1]
€ R™E T € REXE is the identity matrix, and £ € RZ*L is the
kernel matrix, whose elements represent the kernel computed for
all combinations of training points, i.e., {2;; = K (x;,x;) for any
i,7 =1,..., L. The LS-SVM regression is already available in
MATLAB within LS-SVMLab Toolbox version 1.8 [29].

0 17
1 Q+1/y

B. Step 2: Probabilistic Model of the Regression Error
via GPR

Let us consider the error function e(x) between the deter-
ministic model M s_sym(x) and the full-computational model
M(x), which simply writes

e(x) = M(X) - MLS—SVM(X)- (3)

For a generic surrogate model built through a deterministic
regression, such as the LS-SVM regression, the error function
e(x) is only known for a discrete set of configurations of input
parameters x;, for which the corresponding responses of the
full-computational model y; = M (x;) are available (i.e., these
are the values used to train the deterministic regression or to
validate the model). This means that we are unable to quantify
the precision of the model prediction for a generic input con-
figuration x,, without running an equivalent simulation of the
full-computational model (i.e., without knowing y, = M(x.)).

At this stage, we make use of GPR as a viable solution, which
allows overcoming the aforementioned limitation. Indeed, the
GPR can be adopted to enrich any deterministic models built
via a regression technique [18]. Without loss of generality, in
the remaining of this section, the proposed modeling scheme is
applied to the LS-SVM regression shown in (1), leading to the
following formulation:

Mus.svmscpr (%)

M(x) = Mrssvm(x) + €(x) “)

where Mg sym is the deterministic regression estimated via
the LS-SVM regression presented in Section II-A, and é(x) is
an unknown function accounting for the regression residuals.
This means that we are assuming the existence of a nonlinear
function é(x) approximating the error function e(x) in (3) of
the deterministic model, i.e., e(x) ~ é(x).

As it is very unlikely that, in practice, the error &(x) is an un-
correlated random error (like a white noise signal), a commonly
used approach is to describe the error as a Gaussian process
(GP), i.e., é(x) ~ GP(0, k(x,x')) with zero mean and variance
function k(-,-) [19]. In elementary terms, a GP is analogous
to a function, but instead of returning a scalar value of é(x)
for an arbitrary x, it returns an ensemble of values drawn from
a Gaussian distribution, subject to some smoothness condition
imposing a given correlation function k(x, x’) between any two
inputs x and x’ [20]. Hence, the mean and variance over the

possible values of ¢ at x are readily evaluated (see the Appendix
for additional information). For the sake of terminological pre-
cision, the formulation in (4) is a particular case of the GPR with
a fixed mean function [18].

More technically, the aforementioned correlation implies
that the residuals calculated on the training samples e(x;) =
M(x;) — Myssym(x;) # 0! fori = 1,..., L can be modeled
via an L-dimensional multivariate distribution, given by

e(x1) 0
S~ N
e(xr) 0

k(x1,%1) k(x1,%x1)

k(xr,x1) k(xr,Xr)

)

where N indicates the normal distribution.

Itis important to remark that the choice of covariance function
k(-,-) is extremely important for our modeling purposes, since
it specifies the correlation among the values of the error function
in (3) for any value of x € P [21]. The underlying idea is that
points with similar predictor values are expected to have close
response values; therefore, we are implicitly assuming that e(x)
is smooth [18]. Various correlation functions are available in
literature [18], [20]. Without loss of generality, we focus on
the Matern 5/2 covariance function with an automatic relevance
determination (ARD) hyperparameters (i.e., €) [18], [20], [30],
which writes

k(x,x'|0) = o7 (1 +V5r + 27“2) exp(—V5r)  (6)

with,

d (Tm —2,)?
where o and o, for m = 1,...,d are the so-called hyperpa-
rameters collected in the vector 8. The hyperparameters 6 can be
estimated through optimization from the available information
on the error training samples e(x;) for i = 1,..., L. As an
example, the GPR tool of MATLAB allows estimating the above
quantities by maximization of the log likelihood [18].

Thanks to the properties of GP and to the prior information
provided by the training error samples, for any new value of the
input parameter x, € P, such that x, #x; fori=1,... L,
the samples of {e(x1),...,e(xy),e(x.)} follow an (L + 1)-
dimensional joint Gaussian distribution [19], which writes

R it

where e = [e(x1),...,e(xz)]T, K€ R s the corre-
lation matrix given by K;; = k(x;,x;), k. = [k(x.,x1),
oo k(x,xp)] € R Ky, = k(x.,x.), and &, = é(x,) is a
prediction of the error function at x,.

The probability of predicting M (x..), called posterior distri-
bution, given the prior information on the training samples D .z,

Nt is ought to remark that, for a regression, the values of the error function
on the training samples, i.e., e; = e(x; ), are usually different from zero.
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corresponds to conditioning the joint distribution in (8) on the
observations (i.e., training samples)

P(Mussymecer|Xs, D1:n) ~ N(pix., 0%.) )

where /iy, and o2 are defined as follows:
fix, = Missvm(x:) + k. K 'e (10a)
oz =k — kK 'kl (10b)

We are then going to use the prediction mean pi, instead
of the deterministic LS-SVM regression My s_sym(x:) in (1),
whereas the variance 0,2{* gives a local error indicator about the
precision of the estimate. The above probabilistic interpretation
allows estimating the CI at the 100(1 — «)% level, such that the
full computational model M (x,) at any point x, € P

(x, — 21-20%,) S M(x.) < (px, +21-20%,) (A1)

with a probability of (1 — «) [26] where z denotes the inverse of
the Gaussian cumulative distribution function evaluated at 1 —
g.and pix, £ 212 0')2(* represent the upper and lower confidence
bounds, respectively.

It is ought to be remarked that the above formulation holds
only for a GPR with a fixed mean function. In fact, the standard
GPR does not use the LS-SVM model as a trend and writes [18],
[25]

M(x) = GP(Bf(x)", k(x,x'))

where k(.,.) is the covariance function [see as an example the
ADR Matern 5/2 covariance function in (6)] and Bf(x)7 is
the GP trend, in which f(x) = [f1(x),..., fp(x)] indicates a
set of bases functions and 3 = [f1,. .., Op]| are the regression
parameters to be estimated during the training of the GPR. As
an example, the MATLAB tool for the GPR works directly with
constant, linear, and polynomial basis functions.

12)

III. APPLICATION EXAMPLE

The LS-SVM+GPR modeling technique presented in
Section II has been applied to build a probabilistic surrogate
model for the uncertainty quantification of the output voltage
spectral envelope of the switching converter in Fig. 2, as a func-
tion of 17 stochastic parameters. The converter is a 12-V:5-V
switching buck converter with its feedback network (see [31] for
additional details) operating at a switching frequency of 100 kHz
through a sawtooth signal defined between 0 and 5 V.

In the following analysis, the values of all the components
specified in the schematic of Fig. 2 have been considered as
Gaussian stochastic variables centered at their nominal value and
with a standard deviation of 10% around their mean value, lead-
ing to 17 uncorrelated Gaussian parameters (i.e., x € R'7). The
full-computational model used to evaluate the global effect of the
uncertainty parameters on the stochastic behavior of the spectral
envelope of the voltage output of the converter is based on a para-
metric transient simulation in LTspice. Specifically, the spectral
envelope of the output voltage voy, namely Vou, g (f;x.), for
a generic configuration of the circuit parameters x, is calcu-
lated through the full-computational model via the following
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Fig. 2. Buck converter schematic considered in Section III [31]. For each

component, nominal values are indicated.

procedure: 1) use the input parameter configuration to run the
corresponding transient simulation in LTspice; 2) compute the
spectrum Vo (f;x,) by applying the fast Fourier transform
(FFT) on the steady-state portion of the voltage waveform
Vout(t; X4 ); and 3) compute the magnitude of the peak spectral
envelope Vou, £ (f;x.) via the MATLAB function envelop
and convert the resulting spectrum in decibels.

For any configuration of the input parameters, the transient
simulation has been run in the time window [0, 3] ms with a
time step of 10 ns. In order to ensure that all the waveforms
have reached the steady state, the FFT has been applied only
to the last three switching periods of the voltage waveform
Vout(t; X) [3], [4]. The resulting spectral envelope Vour, £ ( fr; X )
with & = 1,..., Ny covers a frequency bandwidth from dc to
30 MHz viaasetof Ny = 91 linearly spaced frequency samples.

For each of the frequency component fj,, the above simulation
scheme (i.e., the full-computational model) has been used to
generate a set of L training samples {(x;, y; (f)} X, where the
input parameter configurations [x1,...,Xr] have been drawn
based on the latin hypercube sampling scheme [32] and y; ( fx) =
Vout, £ (fx; %;)). The training samples have been used to train the
proposed LS-SVM+GPR surrogate model, which writes

Vour, B (fr; x) = Mrssvmscpr (fi; X)

(13)

= Ms.svM+GPR, & (X)

foranyx € P,andk =1,..., Ny.

Specifically, two different LS-SVM+GPR models have been
trained by considering two different LS-SVM regressions with
either linear or RBF kernel. For the sake of completeness, the
same training samples have been also used to build other five
different surrogate models based on state-of-the-art techniques
such the deterministic LS-SVM regression with linear and RBF
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Fig. 3.
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Average absolute error Agg (f) calculated by comparing the predictions of the surrogate models based on the LS-SVM (solid and dashed green curves),

the LS-SVM+GPR (solid and dashed red curves), and the plain GPR (blue solid, dashed, and dotted curves) with the corresponding ones obtained via an MC
simulation with 10 000 samples for an increasing number of training samples L = 50, 150, and 300.

kernel and the standard probabilistic GPR with constant, lin-
ear, and polynomial (order 2) trend [18], respectively. All the
proposed probabilistic models (i.e., the ones based on the LS-
SVM+GPR and the GPR) use the ARD Matern 5/2 covariance
function in (6).

The accuracy of each model is then illustrated in Fig. 3. The
plots provide a comparison among the accuracy provided by
each of the considered surrogate models in terms of the average

absolute error spectrum Agg( fi,) defined for k =1,..., Ny, as
follows:
AulFo) % Vou (i3 %) — Ve, (fi; Xs) 04
a(Jr) = - Mo

where Vou, 5 (fx; X;) corresponds to the envelope amplitude in
decibels obtained via the LTspice simulations for each config-
uration x; of the uncertain parameters considered in an MC
simulation with Nyc = 10000 samples, while f/om_,E(fk; x;) is
the corresponding value estimate by a given surrogate. The above
error is computed by using each of the considered surrogate built
with an increasing number of training samples L = 50, 150, and
300.

From the curves of Fig. 3, the most accurate models are the
ones based on the deterministic LS-SVM regression with linear
and RBF kernel (solid and dashed green lines); however, the
proposed modeling scheme based on the LS-SVM with linear
and RBF kernel+GPR (see the solid and dashed red curves)
provides the most accurate probabilistic surrogate models for
all the considered set of training samples (i.e., L = 50, 150,
and 300). Indeed, the curves related to the LS-SVM+GPR are
usually below the ones related to standard GPR (solid, dashed,
and dotted blue lines). The results also show the improved con-
vergence of the LS-SVM-based deterministic and probability
models when a small set of training samples are available, i.e.,
L =50[16], [17].

As afurther validation, Fig. 4 provides a graphical comparison
between the scattering plots obtained by comparing the results
of an MC simulation with 10 000 samples for all the Ny = 91
frequency points, with the corresponding ones provided by the
deterministic surrogate models based on LS-SVM regression

L=300 L=300
0 s @ O /s
o 7 ’ e e ’
o
o, ’ ’
= 50 & -50
£ +
s 5
=
o
% -100 =-100
9 =
= D
%)
1501, = -150{
-150 -100 -50 0 -150 -100 -50 0
MC, [dB] MC, [dB]
Fig. 4. Scatter plot (10 000 samples) comparing, for all the considered fre-

quency points, the voltage spectral envelope Vo, z predicted by the determinis-
tic model based on the LS-SVM with linear kernel (green dots; left panel) and by
the statistical surrogate model based on LS-SVM (RBF)+GPR (red dots; right
panel) against the MC samples generated by the full-computational model.

with linear kernel (green dots) and the mean values predicted by
the proposed LS-SVM (RBF)+GPR statistical model (red dots).
The plots highlight the capability of the two models to accurately
predict the actual value of the MC simulation, since the samples
are very close to the dashed line, which represents the perfect
agreement between the model and the reference samples.

Also, Fig. 5 compares the probability density functions
(PDFs) of the spectral envelope magnitude at fy = 100kHz
provided by the deterministic LS-SVM regression with linear
kernel (solid green line) and the mean values of the LS-SVM
(RBF)+GPR (solid red line) in (10a) with the histogram resulting
from 10 000 MC samples (gray bins). The results once again
highlight the excellent capability of the two models to capture
the main feature of the reference PDF resulting from the MC
simulations.

As a final comparison between the two models, Fig. 6 shows
two realizations of the spectral envelope randomly selected
among the results of the MC simulation (black curve) along with
the corresponding predictions provided by both the determinis-
tic surrogate model based on the LS-SVM with linear kernel
(dashed green curve) and results of the proposed probabilistic
model (i.e., the mean values and the 99% CI) based on the
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TABLE I
COMPARISON AMONG THE COMPUTATIONAL COSTS NEEDED TO GENERATE THE MODELS AND TO EVALUATE 10 000 SAMPLES
L= L=1 L=
Method 50 50 300
tmodel ‘ tp'red tmodel ‘ tpred tmodel ‘ tpred
MC I - [4n43min | — [4nh43min | — [ 4h43min
LS-SVM (linear) 425 <ls 45s <ls 115s <ls
LS-SVM (RBF) S51s <ls 61s 2s 165s 453
LS-SVM (linear)+GPR 52s 2.5s 129s 10s 4145 23s
LS-SVM (RBF)+GPR 59s 3s 131s 12s 465 26s
GPR (constant trend) 13s 2.2s 73s 10s 304s 19s
GPR (linear trend) 10s 2.3s 73s 10s 294 s 19s
GPR (poly trend order 2) 11s 2.3s 73s 10s 307s 19
Reference is the MC simulation.
0.25 PDF (L=300) Examplification Case #1
’ mmC ‘ -60 & LS-SVM (RBF)+GPR| %] .
" = \/alidation sample #1 H
e S-SVM (lin) == = |.S-SVM (lin) 138
= | S-SVM (RBF)+GPR _ 80FfF i
0.2 ] 4071,
»-100 145 il
tﬂ"’ _15019 20 21 22 23 24 25
0.15 3120} ’l
-140 1
0'1 L L L L L
0 5 10 15 20 25 30
f, [MHz]
0.05 Examplification Case #2
60Ty [ @ LS-sVM (RBF)+GPR]|'"® .
= \/alidation sample #2 o
== = S-SVM (lin) 120
0 — -80r
[}
-65 -60 -55 -50 S
Vout,£ (fo; %), [dB] 100t
=
Fig. 5. Comparison among the PDFs computed for the realizations of the E
spectral envelop Vou, £ (fo; x) at fo = 100kHz obtained from the mean values > 1201
of the probabilistic model based on the LS-SVM (RBF)+GPR (solid red line) and
the LS-SVM regression with linear kernel (solid green line) with the histogram 140
of 10 000 MC samples (black bins).
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LS-SVM (RBF)+GPR model (red vertical bars) for L = 300.
Fig. 6. Comparison between the envelope spectra for two different configu-

The results clearly highlight the advantages of the proposed
modeling techniques with respect to the classical determinis-
tic regression. In fact, different from the deterministic model
based on the LS-SVM regression, for any given configuration
of the input parameters, the proposed probabilistic one built via
the LS-SVM+GPR does not only provide an approximation of
the envelope spectra (red dots), but it also provides the users
with a statistical information on the model error and reliability
by means of the 99% ClIs (red error bars). The accuracy of
such CIs can be easily appreciated by noticing that the actual
spectral envelope provided by the full-computational model
(black curve) lays between the CI estimated by the proposed
models. It is important to remark that the CI shown in Fig. 6
cannot be computed from the results of the MC simulation, since
they are not related to any statistical quantity (e.g., statistical
moments, quartiles, confidence limits, etc.) associated with the

rations of the converter parameters (black curve) randomly chosen among the
10 000 realizations of the MC simulation with the corresponding predictions of
the deterministic model based on the LS-SVM with RBF kernel (dashed green
curve) and the mean values and 99% Cls estimated by the probabilistic models
built via the LS-SVM (linear)+GPR (red vertical bars).

uncertain responses of the system under modeling. Indeed, the
CI provides the user with a statistical information on the model
error, only.

Table I provides a detailed summary of the computational
cost required to build each of the considered surrogate models
tmodel and the computational cost ?peq required by each model
to predict 10 000 realizations of the envelope spectra. All the
simulations have been performed on a MacBook Pro with an
Intel Core i5 CPU running at 3.1 GHz and 16 GB of RAM. The
individual simulation with the full-computational model takes
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1.7 s; therefore, the computational time required to generate the
L = 50,150, and 300 training samples is about 85, 255, and
510 s, respectively. However, even for the maximum number
of training samples (i.e., L. = 300), the most complex surrogate
model can be generated in less than 465 s (i.e., less than 8 min).
The results highlight the advantage of the proposed technique
based on the surrogate models with respect to the standard
MC simulation, since each of the considered models allows
predicting the envelope spectra for 10 000 realizations of the
uncertain parameters in less than 30 s, while the corresponding
MC simulation requires about 4 h 43 min.

IV. CONCLUSION

This article deals with the development of a probabilistic
model for the prediction of the spectral envelope of the output
voltage waveform of a switching converter with a feedback
network; 17 uncertain parameters related to the circuit com-
ponents values are considered. The proposed technique relies
on a two-step modeling scheme, which combines the LS-SVM
regression with the GPR. The accuracy of the resulting prob-
abilistic model is then assessed by comparing its predictions
with 10 000 MC simulations. For the sake of completeness, the
results of the proposed model are then compared with the ones
provided by five different surrogate models, such as the ones
based on the deterministic LS-SVM regression with both linear
and RBF kernel and the probabilistic models obtained via the
standard GPR with constant, linear, and polynomial (order 2)
trend, respectively. From the results presented in this article,
the proposed probabilistic models built with the LS-SVM+GPR
can be considered as viable approaches for the development of
accurate and fast-to-evaluate probabilistic models for the pre-
diction of the uncertain response of complex nonlinear system
in a high-dimensional parameter space.

APPENDIX
GAUSSIAN PROCESS

A GP is a potentially infinite collection of random variables
such that any finite subset of it has a joint multivariate Gaussian
distribution. It can be considered as an extension of the concept
of multivariate Gaussian distributions to infinite dimensional-
ity [18].

A generic GP writes

f(x) ~ GP(u(x), k(x,x))

where p(x) : R — R is a function defining the mean value
(trend) of the GP and k(x, x’) : R% x R? — R is the covariance
function. The GP is completely characterized by the above
quantities, which are defined as

m(x) = E[f(x)]
k(x,x") = B[(f(x) = n(x))(f(x') — p(x))].

As an example, let us considering the following random
function [22]:

15)

(16a)
(16b)

y(x) = by + by + by? 17)

where the coefficients by, b2, and b3 are mutually independent
Gaussian variables with b; ~ N(0,02) for i = 0, 1, 2. For any
x € [—1,+1], the draws have zero mean, i.e.,

Ely(x))] = Elbo + biz + baa?]

=0+0zx+022=0 (18)

and covariance function
k(y(xl),y(xg)) = E[(bo + b1$1 + bgl'%)(bo + blxz + 62$§)]

=09+ 012122 + ogx%xg = k(z1,x2).
(19)

Because linear combinations of a fixed set of independent
normal random variables have a multivariate normal distribu-
tion, given a set of values of the input parameter x; ..., z, the
probability of getting the responses [y(z1),...,y(xr)] has a
multivariate normally distribution, even if it is degenerate when
L > 4 (i.e., the covariance matrix K, computed form the covari-
ance function k(-, -) in (19), is not full-rank anymore). Without
requiring any additional assumptions, the random function y ()
in (17) can be modeled in more generic way as a GP, such as
y(z) ~ GP(0, k(z,2")).
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