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System-level ESD Problems

® Electrostatic discharge (ESD)
» The sudden flow of electricity between two electrically charged objects by contact, dielectric breakdown
= Short duration(0.1ns to 100ns), high voltage(~10kV), high current (1A to 30A) pulse

= ESD sources: charged humans, charged cables (charger, USB, ...), etc.
® System-level ESD problems in various electronic systems
= High-speed operation, high complexity, and miniaturization
=» More sensitive to the ESD problems
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ESD Failures

® Type of ESD failures

= Hard failure: physical damages such as package burnt/cracked, melted wire bond.
= Soft failure: system hang, reboot, and bluescreen due to logical error

® Cost and time losses to debug problems and figure out solutions
=» ESD simulation has to be conducted in the product design stage.

Hard failure Soft failure
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ESD Generators

® ESD standard (IEC 61000-4-2)

= An assumption of that the source is an electrified human body discharge.
= ESD generators have to meet the specified discharge waveform.

® The model of an ESD generator is required to perform an ESD simulation.
= Many investigations (journals, conference papers) for developing ESD generator models

Measure ment

1st peak Curren Current Current

I:Tlct;?ed t of discharge R(I:;SE:T at 30ns at 60ns . ___.: Sirulation
#15%) (*=30%) (#30%) TT
2kV 75A 0.8ns 4A 2A =
kv 15A 0.8ns 8A 4A
6kV 2254 0.8ns 12A GA
8KV 30A 0.8ns 16A 8A

Cumrent [A

- 1 1
R I | 30 40 50 60 70 80 9% -1—t '
—H 0 =0 100 150
Time (ns) Time [ns]

DEsiGNCoN'& ‘, JAN 29 - 31,2019

WHERE THE CHIP MEETS THE BOARD



Commercial ESD Generators

® Commercial ESD generators
= All of commercial ESD generators satisfy IEC 61000-4-2 specification.
= However, they have own characteristics such as peak current, high-frequency noises, etc.
=>» Ironically, those undesired noises make ESD test failures in the laboratory test.

® Many investigations to improve the equivalent circuit model ESD generator, however ...
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Proposed Methodology

® |n the field, engineer tuned known model by adjusting passive components
= Manually tuned the values of the components in the equivalent circuit model with multiple iterations

=>» A time-consuming and tedious task for engineers

® Proposed methodology utilizes “Deep Neural Network (DNN)”
=» Component value extraction within few seconds once DNN is trained
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Artificial Neural Network (ANN)

® Some problems are difficult to solve with conventional programming methodology
=» Computer vision, speech recognition, translation, Al, etc.

® ANNS are computing system inspired by the biological neural networks
= Collection of connected nodes called artificial neurons
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Deep Neural Network (DNN)

® DNN has multiple hidden layers, and it is a kind of the ANNSs.
® How works?
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DNN Design for ESD Generator Modeling

® \Without the machine learning, making ESD generator modeling program is very difficult

= Hard to code logic of the program — it requires high-level knowledge about circuit
® [ ct’s apply DNN to our problem
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Current [A

Circuit structure:
sampling n points

J. Yousaf, et al., IEEE on Electromagnetic Compatibility, 2018
® The DNN takes sampled waveforms as input

= Each node in the input layer represents the current value of the corresponding sampling point

® The DNN predicts the passive components values that can generate a waveform similar to the input
| l
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Dataset Generation

® \When utilizing machine learning, one of the most difficult things is gathering reliable data
» The dataset was generated using SPICE simulations with randomly selected passive components

® To keep reasonable exploration scope, we set parameter ranges based on the original model
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Data Preprocessing

® Feature Scaling
= A method used to standardize the range of features of data
= Each feature is converted to the same scale to improve learning performance (learning speed, prevention of divergence)
= [n this study, all the values are normalized based on min-max normalization
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Optimization of DNN Hyperparameters

® DNN Hyperparameters?
» Hyperparameters are properties that define a design of DNN model
= To generate a good DNN model, you need to optimize the hyperparameters
= Difficult or almost impossible to perfectly optimize DNN hyperparameters
= Hyperparameters are interrelated to each other

® DNN hyperparameters
= The size of a dataset
= The number of hidden layers
= Input resolution ni
= Type of activation function 3
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DNN Optimization (1): # of Dataset

® Dataset size makes a trade-off between accuracy and training time.
® Even though training time is increased, accuracy is also continuously increased
=» 200,000 dataset for DNN training
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DNN Optimization (2): # of Hidden Layers

® The number of hidden layers can affect fitting performance.
® Accuracy is gradually saturated with increasing the number of hidden layers.
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DNN Optimization (3): Input Resolution

® Higher resolution doesn’t guarantee the better performance for all cases.

= Face recognition system: 8 x 8, 16 x 16, 32 x 32 (Best), 64 x 64, 128 x 128
(source: B.J. Boom, et al., 2006)

= Scene illumination classification using neural network: 64, 128 (Best), 256, 512, 1024, 2048
(source: M. H. Hesamian, et al., 2015)

@® Accuracy Is saturated at the 128 resolution.
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DNN Optimization (4): Type of Activation Function

® Define propagation output of a neuron
® Different kinds of activation functions: ReLU, tanh, sigmoid
=» The shortest training time with ReLU
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Proposed DNN Architecture
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® The size of dataset: 200,000

® Overall layer depth: 8 layers
(1 input layer, 6 hidden layers, 1 output layer)

® |nput data resolution: 256
® Type of activation function: ReLU
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Verification Results

Correlation coefficient

® \krified the DNN model with randomly generated 400 waveforms g, = S- ~#0( = iay)]

® High correlation coefficient(Avg 0.98, > 0.9 for 95.5 %) where:
® \When the waveforms are similar, the correlation coefficient is close to one. o the standard deviation

( 1s the mean
E 1s the expectation
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Correlation with Commercial ESD Generators

® \erified the DNN model with the measured waveforms from commercial ESD generators
® Good agreement with correlation coefficients of larger than 0.9
® Needs for enhanced circuit model for training to predict high-frequency noises
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Conclusion

® Proposed the novel methodology for ESD generator modeling based on DNN

® Successfully predict equivalent circuit model for several ESD waveforms in a short time
® Also, verified with the measured waveforms of commercial ESD generators

® Possibility to improve accuracy with the enhanced circuit model in the DNN training

® Believe that the proposed methodology can be used in ESD simulation in the design stage
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Q&A

Thank you for your attention.

Question or comment ?

Jayoung Yang

Samsung Electronics Inc.
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