In-depth Analysis of DDR3/DDR4 Channel with Active Termination

Changwook Yoon, (Intel)

Woojin Lee, Jack Chui, Gawon kim, Dharmesh Bhakta (Intel) Dan Oh (Samsung Electronics)

- Introduction
 - Basic of On-die termination
 - Comparison of on-die termination: Passive/Active
- Non-Linearity in Active Termination
 - I-V curve in active termination
 - Impacts
- Impact of Non-Linearity in Active Termination
 - SSN variation
 - Timing variation
- Summary

Basic of Active Termination

- Active termination is hard to meet desirable impedance
- Unexpected impedance determines signal quality in
 - DC level
 - \circ Reflection noise
 - \circ Crosstalk
 - \circ SSN

Comparison of Active Termination

I-V Curve in Active & Passive Termination

- Passive termination: current is inversely linear to output voltage
- Active termination: current is NOT linear to output voltage
- Calibration point is an operating voltage at desirable impedance

I-V Curve & Impedance

- As R_T is getting less, I_{OUT} becomes larger
- I_{OUT} at Lower V_{OUT} is more stable than Higher $V_{OUT} \rightarrow$ More NON-Linear
- R_T is more constant at higher $V_{OUT} \rightarrow$ Need to measure linearity

Non-linearity Coefficient

- At calibration point, voltage range needs to be defined first.
- Linearity at C_P is R_T variation within defined voltage variation
- High LCP means High NON-linearity

DC Level

- As R_T goes higher, low-voltage and current becomes lower (Larger eye-height)
- As R_s goes higher, low-voltage goes higher (smaller eye-height) and current goes lower (less power)

Crosstalk from Active Termination

- Measured crosstalk at victim depending on $R_{T,A}$ or $R_{T,V}$
- Crosstalk is more sensitive to R_{T,V} than R_{T,A}
- Lower R_T (A) has less noise but larger noise variation than higher R_T (B)

SSN from Active Termination

- Measured SSN at victim depending on R_{T,A} or R_{T,V} under Coupling and No Coupling
- Without coupling, SSN becomes less as R_{T,A} or R_{T,V} goes higher
- With coupling, noise follows crosstalk trend at R_{T,V} but SSN trend at R_{T,A}

Active Impedance Setting

CC	С _Р (0~1)	Linearity (Ω/V)	
	Low C _P (0.35)	40.8	
	High C _P (0.75)	57.5	

- 0.35VCC needs higher current to make 40ohm than 0.75VC
- Linearity (+/-5%) at 0.35VCC is smaller than 0.75VCC

ISI Waveform

- At POD, low-voltage at 0.75xVCC is close to ideal 40
- Though linearity is bad, calibration point is more important to get better timing error

ISI+Crosstalk Waveform

 Crosstalk is bigger at 0.75xVCC but jitter is less

ISI+SSN Waveform

- PWR & IO noise at 0.35xVCC is bigger due to larger current
- Noise ratio at 0.75xVCC is bigger due to larger R_{τ}

ISI+Crosstalk+SSN Waveform

- PWR noise at 0.35xVCC is worsen, but IO noise is better
- Timing error at 0.75xVCC is better despite larger IO noise

Channel Summary

	C _P	PWR Noise	IO Noise	Jitter
ISI	Low C _P (0.35)	-	-	0.078
	High C _P (0.75)	-	-	0.064
Xtalk	Low C _P (0.35)	-	105	0.183
	High C _P (0.75)	-	184	0.168
SSN	Low C _P (0.35)	219	166	0.216
	High C _P (0.75)	178	158	0.166
ALL	Low C _P (0.35)	240	251	0.31
	High C _P (0.75)	193	344	0.254

- High calibration point is better jitter than low calibration point in POD topology
- Crosstalk is worsen at high calibration point
- SSN is better at high calibration point BUT noise reduction ratio is smaller
- Under larger IO noise, jitter can be smaller due to low voltage level

Lower Linearity

ISI from Linear Termination

	С _Р (0~1)	Linearity (Ω/V)	V _{LOW} (mV)	R _{term} (Ω)	Jitter (UI)
	Ideal 40	-	-	-	0.058
High L	Low C _P (0.35)	20.8	700	24.5	0.078
	High C _P (0.75)	29.2	500	47	0.072
Low L	Low C _P (0.35)	13.3	676	26.5	0.071
	High C _P (0.75)	21.7	545	41	0.058

- Low linearity has more similar low-voltage (VLOW) to passive termination
- Under smaller eye-height (-45mV), 13% jitter is improved

Crosstalk from Linear Termination

	С _Р (0~1)	Linearity (Ω/V)	IO Noise (mV)	Jitter (UI)
High L	Low C _P (0.35)	20.8	105	0.183
	High C _P (0.75)	29.2	182	0.168
Low L	Low C _P (0.35)	13.3	150	0.167
	High C _P (0.75)	21.7	191	0.149

- Low linearity has more similar low-voltage (VLOW) to passive termination
- Under smaller eye-height (-75mV), 12% jitter is improved

Summary

- Correct non-linear termination setting is necessary
 - Appropriate calibration point ($C_P:0^{-1}$)
 - At calibration point, non-linear coefficient is calculated
- Non-linear termination degrades signal quality with
 - DC level shifting
 - Change of crosstalk magnitude
 - Leveling SSN impact on the channel
- DC shifting from non-linearity is major noise effect in DDR channel

Thank you!

QUESTIONS?

