Enabling World's first over 4.4Gbps/pin at sub-1V LPDDR4 Interface using Bandwidth Improvement Techniques

Billy(Kyoung-Hoi) Koo, Jinho Choi, Kwanyeob Chae (Samsung)

SPEAKERS

Billy Koo

Principal Eng'r, Samsung kiminkoo@samsung.com

Previous DesignCon

SANTA CLARA CONVENTION CENTER

Robust I/O circuit scheme for world's first over 1.6Gbps LPDDR3

> Kyoung-Hoi Koo SAMSUNG

Versatile IO Circuit Schemes for LPDDR4 with 1.8mW/Gbps/pin Power Efficiency

Kyoung-Hoi Koo

January 28-31, 2014 | Santa Clara Convention Center | Santa Clara, CA

0

UBM

0

UBM

Outline

- Technical Trend
- Valid Window Margin(VWM)

Proposed LPDDR4 Interface:

- $_{\circ}$ Low Cio Multi-VoH level Driver and Receiver
- Duty Adjustment Scheme
- Asymmetric Rise/Fall time Control Scheme
- On-die De-cap. Estimation
- Clean Data Strobe(DQS) Signal
- DQS Cleaning Method

Test Results

- Valid Window Margin(VWM)
- Conclusion

Memory Interface Speed Trend

- Future AP must have GPU performance to run high spec. PC games
- Double the bandwidth every other year

Design Challenges

- On-chip
 - Logic speed \uparrow , Gate counts \uparrow
 - IR drop↑, Dynamic Voltage Drop(DvD) ↑
 - Clock path jitter $\uparrow,$ duty distortion \uparrow
- Off-chip
 - PKG size \downarrow
 - Cross talk \uparrow
- Process
- Process uncertainty↑
- Memory
- Timing parameter variation \uparrow
- Density \uparrow

Purpose of DDRPHY

Maximize the valid window margin under P/V/T variations, thereby providing reliable memory access

PHY makes DQS edge is centered at DQ window at memory or PHY

If not, the probability of bit-flip error increases

→ Hard to meet timing requirement on controller side

What is Valid Window Margin(VWM)

WRITE Mode VWM

On-Chip

Reference clock jitter (A1-A2) PLL jitter (A3) Clock network jitter (A3-A5) Clock network duty (A3-A5) Off-Chip

Off-Chip clock jitter (A5-B2) Off-Chip clock duty (A5-B2) Off-Chip eye open ((A51-1)-(B2-1))

READ Mode VWM

Read path jitter (B5-C2), Read path duty (B5-C2)

Outline

- Technical Trend
- Valid Window Margin(VWM)

Proposed LPDDR4 Interface:

- Low Cio Multi-Voн level Driver and Receiver
- Duty Adjustment Scheme
- Asymmetric Rise/Fall time Control Scheme
- On-die De-cap. Estimation
- Clean Data Strobe(DQS) Signal
- DQS Cleaning Method
- Test Results
 - Valid Window Margin(VWM)
- Conclusion

LPDDR4 Signaling and Multi-Voн Driver

- Difference Between LPDDR3 and LPDDR4
- Multi-Voн Driver

Low Cio Transceiver

[Source: DesignCon2013]

Proposed Transceiver Block

Duty Adjustment Scheme(1)

The duty control block is located at the first stage of I/O and it consists of two CMOS inverter group which is composed by the different kinds of strength pull up and down transistors.

Driver Duty Control Scheme

Duty Ratio Range

Duty Adjustment Scheme(2)

Asymmetric pre-driver control scheme for DQS(or CLK) PAD can be adjust rise/fall time of PADP and PADN independently.

On-Die De-Cap. Estimation

It is very critical to achieve cost-effective PDN design with optimized on-die power delivery network including de-cap and power/ground grids. Also to reduce SSO noise in weak Power Delivery Network (PDN) condition such as POP package environment, On-die de-cap insertion is considered, but adding on-die de-cap increases the chip size as one of negative sides.

Outline

- Technical Trend
- Valid Window Margin(VWM)
- Proposed LPDDR4 Interface:
 - $_{\circ}$ Low Cio Multi-VoH level Driver and Receiver
 - Duty Adjustment Scheme
 - Asymmetric Rise/Fall time Control Scheme
 - On-die De-cap. Estimation
 - Clean Data Strobe(DQS) Signal

DQS Cleaning Method

- Test Results
 - Valid Window Margin(VWM)
- Conclusion

READ DQS Glitch

- Y_DQS used for clock in read-FIFO
- At idle state (DQSP=DQSN=0)
 - ➔ Glitch occurs on DQS receiver output (Y_DQS)
 - → READ FAIL

READ DQS Measurement

Keysight Infiniium : Tuesday, December 08, 2015 7:31:15 PM

Remove DQS Glitch

- During READ operation,
 - → glitch occurs on Y_DQS at idle state (DQSP=DQSN=0)
- Initial gate training,
 - → generate optimized gate pulse to filter out glitch

DQS2CK Variation in Mobile DDR

Large DQS2CK variation in mobile DDR due to absence of DLL

Proposed DQS Cleaning Method

Outline

- Technical Trend
- Valid Window Margin(VWM)
- Proposed LPDDR4 Interface:
 - $_{\circ}$ Low Cio Multi-VoH level Driver and Receiver
 - Duty Adjustment Scheme
 - Asymmetric Rise/Fall time Control Scheme
 - On-die De-cap. Estimation
 - Clean Data Strobe(DQS) Signal
- DQS Cleaning Method

Test Results

- Valid Window Margin(VWM)
- Conclusion

Test Environment

Test Board

JAN 31-FEB 2, 2017

Test Chip

Memory RAED/WRITE operation over 4.4Gbps with sufficient timing margin

WRITE VWM @4420Mbps

WRITE VWM @4420Mbps

- Driving Strength Dependency
 - PDDS : pull-up driving strength
 - o DDS: pull-down driving strength
 - Good VWM size: PDDS7-DDS7,
 PDDS7-DDS4, PDDS4-DDS7
 - DDS setting should be deiced VWM and power consumption

- Pattern types affects VWM size and offset
- Memtester pattern was used to measure VWM

- Optimal test pattern size
 - $_{\circ}~$ WRITE : 500KB

Optimal test pattern size

• READ : 1MB

READ

.

UBM

WRITE

DBI function affects VWM size and power consumption

READ

UBM

Conclusion

- Introduce Valid Window Margin
- Proposed performance improvement IO design technique
- DQS Cleaning Method
- Various VWM test results
- 4420Mbps@0.9V LPDDR4 interface using 10nm FinFET process

Thank you!

QUESTIONS?

