DESIGNCON[®] 2015

ULTRASCALE FPGA DDR4 2400 MT/S SYSTEM LEVEL DESIGN OPTIMIZATION AND VALIDATION € XILINX ➤ ALL PROGRAMMABLE.

Authors

- > Thomas To, Xilinx Inc.
- > Penglin Niu, Xilinx Inc.
- > Juan Wang, Xilinx Inc.
- > Changyi Su, Xilinx Inc.
- > Chong Ling Khoo, Xilinx Inc.
- > Ajay Kumar Sharma, Xilinx Inc.
- > Dmitry Klokotov, Xilinx Inc.
- > Wei Liu, Xilinx Inc.
- > Yong Wang, Xilinx Inc.

FPGA High Speed High Bandwidth Unique Challenges

> Massive amount of High Performance IO can be used for DDR4

	KINTEX.	KINTEX.	VIRTEX?	VIRTEX.
Logic Cells (LC)	478	1,161	1,995	4,407
Block RAM (BRAM; Mbits)	34	76	68	115
DSP48	1,920	5,520	3,600	2,880
Peak DSP Performance (GMACs)	2,845	8,180	5,335	4,268
Transceiver Count	32	64	96	104
Peak Transceiver Line Rate (Gbps)	12.5	16.3	28.05	32.75
Peak Transceiver Bandwidth (Gbps)	800	2,086	2,784	5,101
PCI Express Blocks	1	6	4	6
100G Ethernet Blocks	- /-	1	-	7
150G Interlaken Blocks	- /	2	-	9
Memory Interface Performance (Mbps)	1,866	2,400	1,866	2,400
I/O Pins	500	832	1,200	1,456

High Performance IO (HPIO) Support Many IO Standards

> FPGA Programmable HPIO supports many memory /non memory

interfaces.

	IO Standards
DDR4	POD12
DDR3	SSTL15
DDR3L	SSTL135
LPDDR3	HSUL
RLDRAM3	SSTL12
QDR4	HSTL/SSTL:1.2V,1.25V POD:1.1V,1,2V
QDR2+	HSTL:1.2V,1.8V
LVDS	LVDS

> Combo IO supports interfaces that have different electrical standards.

- Extra burden on FPGA IO

> FPGA IO capacitance is much higher than in ASIC design.

FPGA HP IO Package Pin Mapping HP IOs are located at the center & around the package, IO breakouts are more susceptible to cross talk– XCVU440 FLGA2892

Bank 39	Bank 47	Bank 61	Bank 71	Quad 222	Quad 232	SelectIO Pins	Dedicated Pins	Transceiver Pins
Bank 40 Bank 41	Bank 49	Bank 63	Bank 72	Quad 224 Quad 225		(i) io_ur	Ø VREF	MGT[H or Y]RXP#
Bank 42 Bank 43	Bank 50 Bank 51	Bank 65 Bank 66	Bank 84 Bank 94	Quad 226 Quad 227		IO_LIN IO (shok-ended)	< MGTAVTTRCAL G MGTRREF	MGTPH or YPXN#
Bank 44	Bank 52	Bank 67	Quad 219	Quad 229		Dis_ume_cc		MGT[H or Y]T XN#
Bank 45 Bank 46	Bank 53 Bank 60	Bank 68 Bank 70	Quad 220 Quad 221	Quad 230 Quad 231		VRP		MGTREFCLKIP

Unique FPGA Challenges

- > High density IO Pin support many interfaces simultaneously.
- > Highly programmable to customer requirements.
- > Higher IO Capacitances than ASIC
 - FPGA IO Cap = 3.5pF versus Typical ASIC IO Cap =~1.0pF
 - Silicon timing uncertainty higher compared to ASIC

> Lead to different design space & optimizations.

High Speed Parallel Bus System Considerations What are the memory technologies to support & their speeds? What are the memory devices variations & electrical limits? What are the electrical channel characteristics? What is the optimal design space? Clock Data FPGA

DESIGNCON[®] 2015 WHERE THE CHIP MEETS THE BOARD

Design Parameter Table & Design Data Eye Response

- → Systematic approach provides solid understanding of critical design factors
- → Controllable critical factors can re-center their nominal values to maximize margin

: : :

IO Key Features to Enable DDR4 Interface

> Mother Board via Improvement Quantification

- Upper Routing vs Lower Routing improvement
- > Tx Feature
 - POD12 Driver with De-emphasis Equalization
- > Rx Feature
 - Continuous Time Linear Equalization
- De-skew Feature
 - Data (DQ) & Data Strobe (DQS) per bit de-skew

Mother Board Via Cross Talk Quantification

Frequency (GHz)

Upper and Lower Routing Eye Diagram Comparison

Lower Layer

Upper Layer

~ 7.2% jitter improvement using upper layer

Tx De-emphasis Architecture

WHERE THE CHIP MEETS THE BO

Write Data Eye Improvement with De-emphasis

Receiver Continuous Time Linear Equalizer FPGA DRAMs

DC15

DESIGNCON 2015 WHERE THE CHIP MEETS THE BOARD

Read Data Eye Improvement with CTLE Improvement

Per Bit De skew Capability

#DC15

DESIGNCON[®] 201

WHERE THE CHIP MEETS THE BO

Experimental Data Validation

- > Validation System Configuration
- > Write Shmoo Procedure Overview
- > Read Shmoo Procedure Overview
- > Data Eye Scope Capture
- > Over Clocking Results

Validation System

Write Shmoo Margining Test Flow

Read Shmoo Margining Test Flow

Write and Read Eye Shmoo at 2400MTs

DesignCo

DDR4 Memory Write Eye (Scope) Measurement Write Eye Capture at 2400MTs

Probes Attachment

Write Data Eye Capture

Over Clocking Results (at 2993MTs)

Data Eye has sufficient margin.

#DC15

Summary & Conclusions

- A top down systematic approach (including PHY/IO /board/package) using statistical DOE enabled an effective method to ensure design robustness.
- > Besides meeting the design spec., each design factors impacts can be quantified and help making better judgments and trade offs.
- System enablers such as routing selection, IO equalization circuits improvement were quantified.
- > Validation procedures were overviewed and empirical data showed healthy margin for the DDR4 running at 2400MTs.
- Over clocking data indicated that the stand alone interface is functioning at 2993MTs with low system clock jitter and sufficient data eye margin.

