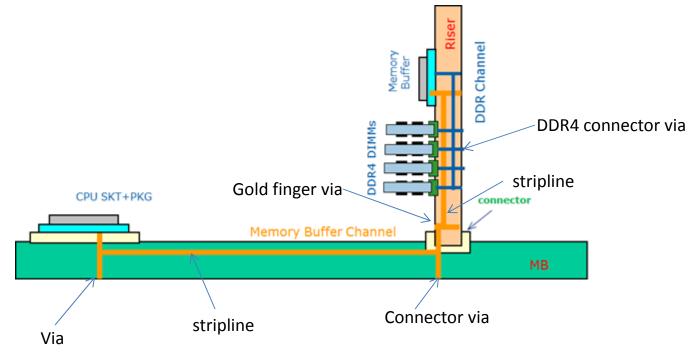
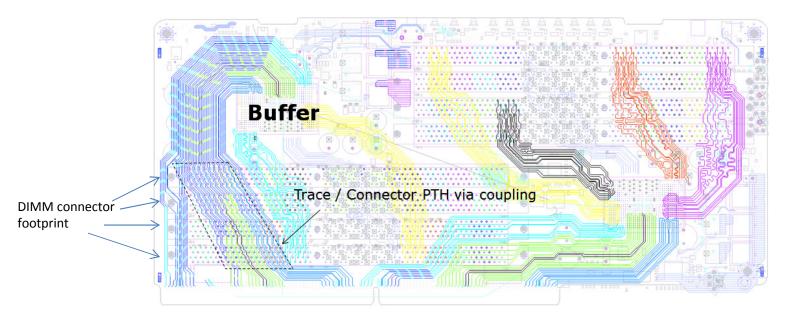


SANTA CLARA CONVENTION CENTER

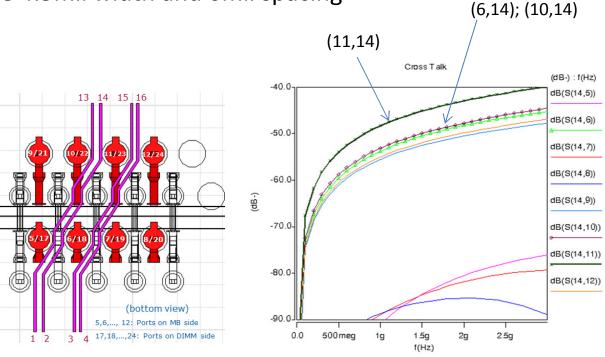
Channel to Channel Crosstalk Behavior and Design Optimization for DDR4 Signaling

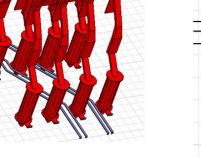

> Xiang Li James McCall

Introduction


- Memory buffer on riser card to increase memory performance.
 - high speed point to point topology
- DDR4 channels on the back side of the buffer

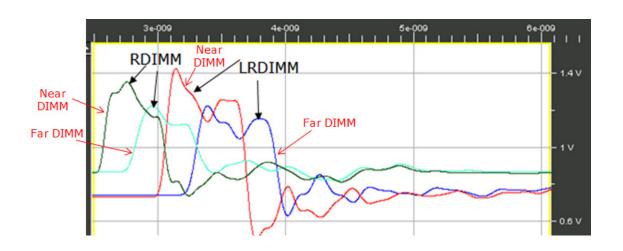
Buffer/DDR4 Coupling

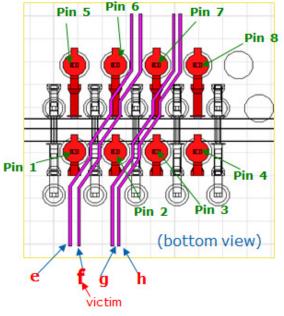

- Memory buffer channel routing through DDR4 connector field.
- DDR4 channel has coupling impact on memory buffer channel, while memory buffer channel has coupling impact on the DDR4 channel as well.



Buffer/DDR4 Coupling Model

- 3D model generated to include stripline trace from memory buffer channel and connector via from DDR4 backside channel
 - Line 1 and line 2 is 4.5mil width and 10mil spacing
 - Line 3 and line 4 are 4.5mil width and 6mil spacing

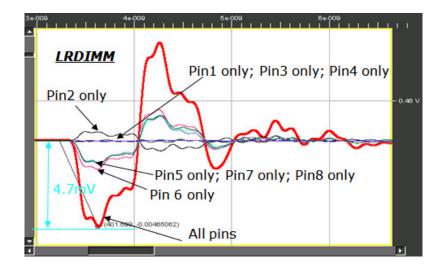

Time Domain Analysis

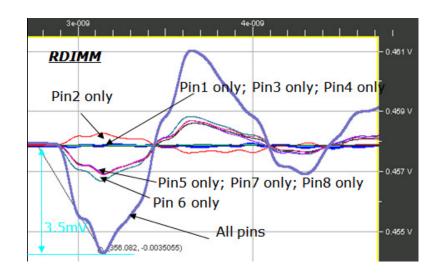

- Eye diagram of Memory buffer channel without DDR4 coupling
 - EH_1 and EW_2
- Eye diagram of memory buffer channel with DDR4 coupling
 - EH_2 and EW_2
- DDR4 coupling impact on buffer channel
 - EH impact = (EH 1 EH 2)..... (to buffer) $EW impact = (EW \ 1 = EW \ 2)$ Near DIMM signal injected on buffer channel **Buffer/DDR4 model** • DDR4 Ch0 CODO Far DIMM signal injected on **Buffer/DDR4 model** buffer channel C1D **Buffer/DDR4 model** DDR4_Ch1 C1D0 **Buffer/DDR4** coupling model MB side (to CPU)

ESIGNCON[®] 2013

DDR4 Channel Signaling

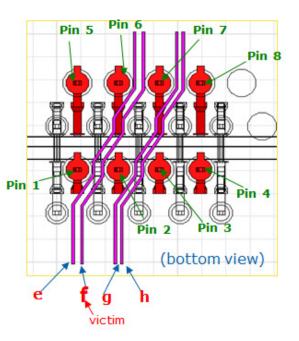
- 1.6GT/s with 2 channels and 2 DIMMs per channel (2DPC)
- DQ on DDR4 READ (Tx on DIMM side; Rx on Buffer side)
- Both RDIMM and LRDIMM checked
 - Waveforms saved as Piecewise Linear (PWL) voltage sources and injected on buffer channel through coupling model.





Waveforms on Buffer channel from DDR4 coupling

- Memory buffer channel Tx static
- DDR4 signals injected on memory buffer channel
- Waveforms measured on memory buffer channel Rx



DDR4 Coupling on Buffer channel

- More impact from pin 5, 6,7,8
 - Single ground via row compared to pin 1,2,3,4 with two ground via rows

ltem	Unit: EH(mV); EW(ps)	LRDIMM		UDIMM	
		ΔEΗ	ΔEW	ΔEΗ	ΔEW
а	DDR4 all pins Xtalk (8 Aggr.)	9.1	6.2	4.06	3.13
b	DDR4 Pin1 only	0.42		0.24	
С	DDR4 Pin2 only	0.99		0.43	
d	DDR4 Pin3 only	0.17		0.08	
е	DDR4 Pin4 only	0.05		0	
f	DDR4 Pin5 only	1.95		0.76	
g	DDR4 Pin6 only	2.46		1.09	
h	DDR4 Pin7 only	2.5		1.12	
i	DDR4 Pin8 only	2.14		0.90	
	Sum (Item b~i)	10.7		4.62	

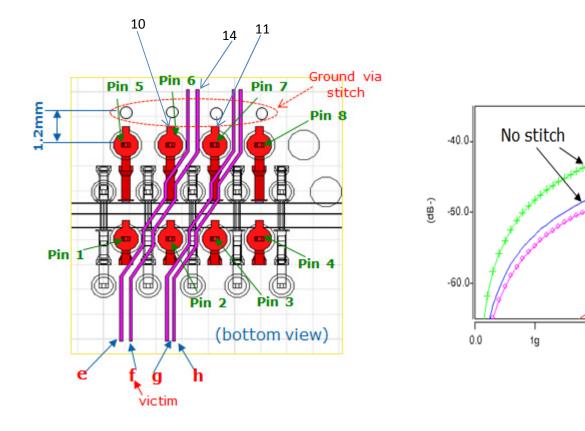
(Phase impact is not included)

Design Optimization

Cross Talk

With stitch

3g


f(Hz)

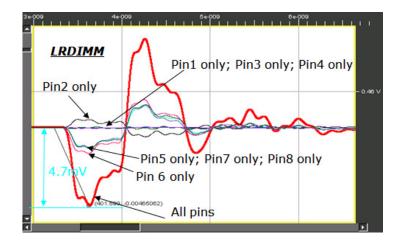
4g

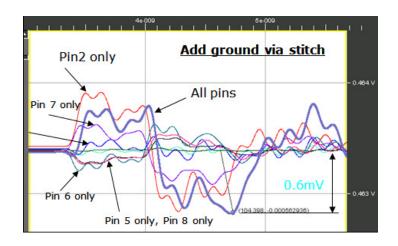
5g

2g

• Ground via (10-20-28) to reduce coupling

S(14,11) - Via Stitch

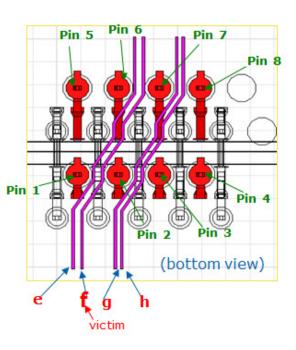

S(14,11) - No Via Stitch


S(14,10)) - Via stitch

S(14,10)) - No Via Stitch

Waveforms on Buffer channel from DDR4 coupling

- Memory buffer channel Tx static
- DDR4 signals injected on memory buffer channel
- Waveforms measured on memory buffer channel Rx



DDR4 Coupling on Buffer channel

- LRDIMM case:
 - EH impact reduced from 9.1mV to 1.8mV; EW impact can be ignored

ltem	Unit: EH(mV); EW(ps)	LRDIMM		LRDIMM with Gnd via stitch	
		ΔEΗ	ΔEW	ΔEΗ	ΔEW
а	DDR4 all pins Xtalk (8 Aggr.)	9.1	6.2	1.8	0
b	DDR4 Pin1 only	0.42		0.43	
С	DDR4 Pin2 only	0.99		1.06	
d	DDR4 Pin3 only	0.17		0.16	
е	DDR4 Pin4 only	0.05		0.01	
f	DDR4 Pin5 only	1.95		0.13	
g	DDR4 Pin6 only	2.46		0.41	
h	DDR4 Pin7 only	2.5		0.67	
i	DDR4 Pin8 only	2.14		0.28	
	Sum (Item b~i)	10.7		3.15	

(Phase impact is not included)

Discussions

- The connector pinout used in the study is a combination of JEDEC DDR4 connector pinout patterns.
- Two track routing is assumed in the study. Much less impact is expected for single track routing
- DQ pins at the inner rows of DDR4 connector has less impact
- Implementation of ground via stitch may be limited due to system constraints, such as routing on other layers
- DDR4 system may support different topologies such as 3 DIMMs per channel (3DPC) at a relatively low speed, the impact is expected be similar or less.

DDR4 DIMM Connector Field Routing Recommendation

- Keep single trace routing if possible
- If two trace routing is needed, keep two-track routing through half of DIMM field and single track routing of the same trace though the rest DIMM field, thus to mitigate the coupling impact
- If two-track routing is needed, keep two-track routing for DQ pins located at inner rows of DDR4 RDIMM connector footprint
- If possible, add a ground via stitch near the DQ pins located at the outer rows of the connector footprint

Thanks

