DESIGNCON[®] 2015

AND CTLE FEATURE OPTIMIZATION WITH STATISTICAL ENGINE FOR BER SPECIFICATION

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

Penglin Niu, penglin@xilinx.com

Fangyi Rao, fangyi rao@keysight.com

Juan Wang, juanw@xilinx.com

Gary Otonari, gary otonari@keysight.com

Nilesh Kamdar, nilesh kamdar2@keysight.com

Yong Wang, yongw@xilinx.com

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

Outline

- DDR4 feature and design challenge
- > FPGA DDR system design challenge
- > DDR4 statistical simulation method
- **DDR4** De-emphasis and CTLE optimization result discussion

DESIGNCON[®] 2015

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

DDR4 Features

Feature	DDR3	DDR4
Voltage	1.5V	1.2V
Max Datarate (Mbps)	2133	3200
DQ Bus	SSTL15	POD12
DQ Vref	external	Internal
DQ Driver	34 <i>,</i> 40 & 60 (ohm)	34, 40, <mark>48</mark> & 60 (ohm)

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

FPGA DDR4 Design Challenges

> DDR4 Design Challenge

VESIGN HONE

- Higher datarate, Higher loss, intensified ISI

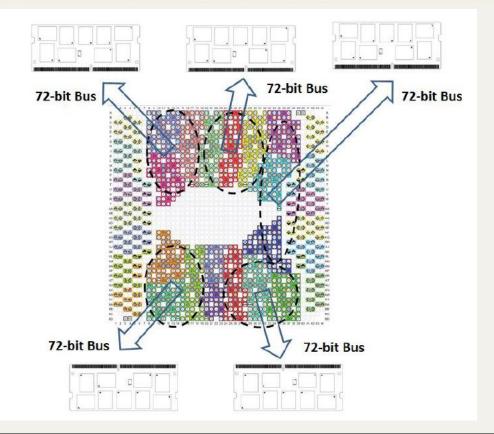
> FPGA Configurable I/O standards

- DDR3, DDR3L, DDR4, LPDDR2, LPDDR3, RLDRAM3, QDR2+, QDR4
- High pad capacitance: FPGA ~3.5pF Vs. ~1.8pF ASIC

FPGA High I/O count

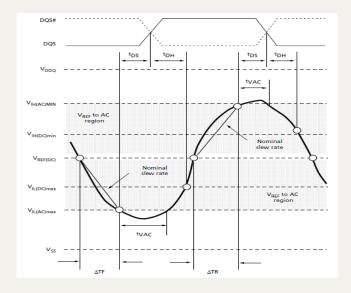
- Up to ~1400 IO counts in Ultrascale family
- High density signal routing
- High signal to ground ratio

> Signal enhancement techniques to mitigate

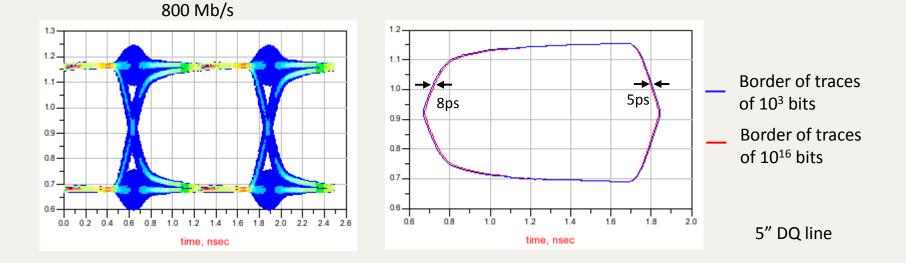

- De-emphasis & CTLE

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

FPGA DDR4 Design Challenges

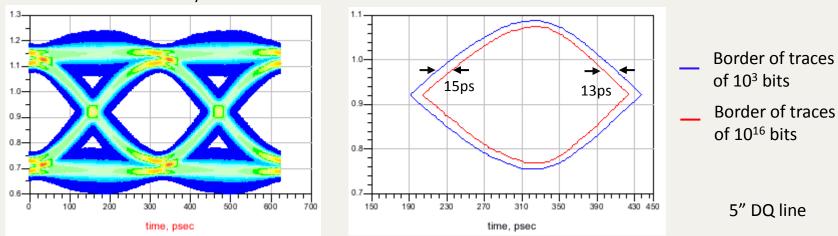

ESIGN HO

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA


Traditional DDR Design Methodology

- Run transient simulation using IBIS or SPICE models of controller and memory
- Measure setup and hold times on waveforms

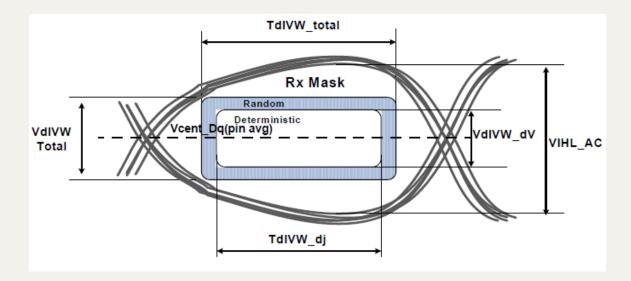
January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA


ISI at Low Speed

- Timing margin deceases by 1% UI from 10³ bits to 10¹⁶ bits
- At low speed, limited number of bits is adequate for system verification

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

ISI at High Speed



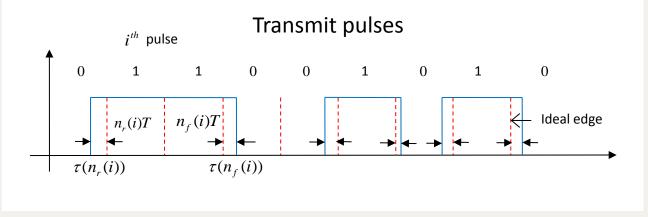
3200 Mb/s

- Timing margin deceases by 9% UI from 10³ bits to 10¹⁶ bits
- At high speed, design needs to be verified at target BER

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

DQ Rx Mask Spec in DDR4

- Mask consists of deterministic and random portions
- BER inside the total mask must be below 10⁻¹⁶


January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

Statistical Simulation for BER

- It's impractical to simulate 10¹⁶ bits to estimate BER at 10⁻¹⁶
- Statistical method can be employed to calculate eye probability distributions
- Equivalent to running infinite number of bits
- BER can be obtained rigorously at arbitrarily low level

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

Linear Superposition

$$v(t) = \sum_{i} \left\{ R[t - n_r(i) \cdot T - \tau(n_r(i))] - F[t - n_f(i) \cdot T - \tau(n_f(i))] \right\} + v_0$$

R(t): rise edge step response F(t): fall edge step response T: UI

 τ : transmitter jitter

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

Transmitter Jitter

Jitter components include DCD, SJ and RJ

$$\tau(n_r) = -\frac{DCD_{pp}^{data}}{2} - (-1)^{n_r} \frac{DCD_{pp}^{clk}}{2} + Asin(2\pi f n_r T + \phi) + \rho(n_r)$$

$$\tau(n_f) = \frac{DCD_{pp}^{data}}{2} - (-1)^{n_f} \frac{DCD_{pp}^{clk}}{2} + Asin(2\pi f n_f T + \phi) + \rho(n_f)$$

 DCD_{pp}^{data} : peak-to-peak data DCD DCD_{pp}^{clk} : peak-to-peak clock DCD A & f: SJ amplitude and frequency ρ : RJ

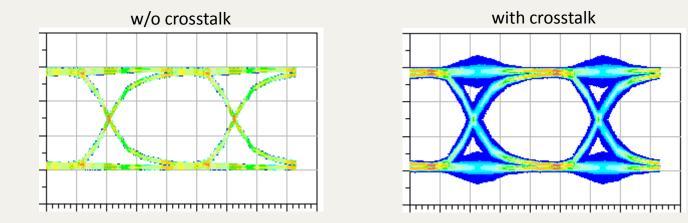
January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

Eye Probability Distribution

 $p(v,t) = \frac{1}{2\pi} \int_0^{2\pi} d\phi \frac{1}{2^M} \sum_{m=1}^{2^m} \int \delta[v - v^{(m)}(t)] \cdot \prod_i g[\rho(n_r^{(m)}(i))] \cdot g[\rho(n_f^{(m)}(i))] \cdot d\rho(n_r^{(m)}(i)) \cdot d\rho(n_f^{(m)}(i))$

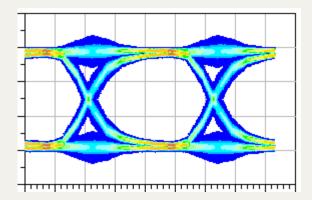
m: pattern indexM: step response settle time in bitg: RJ PDF

- Tx jitter affects the output distribution through channel step responses
- Jitter effect is directly handled in PDF calculation instead of post-processing
- PDF is computed rigorously using efficient algorithms w/o approximation
- Accurate prediction of BER

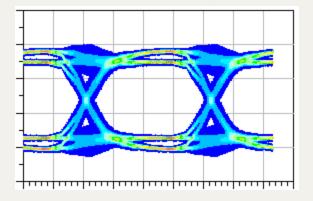

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

Crosstalk

Crosstalk is additive noise to victim signal


Included by convolution between victim PDF and crosstalk PDF

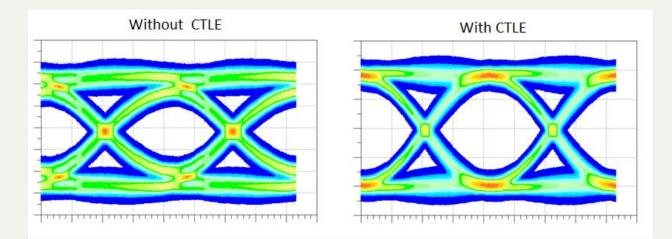
 $p(v,t) = \int p_{victim}(v - v_1 - v_2 \cdots - v_n, t) p_{xtlk}^{(1)}(v_1, t) p_{xtlk}^{(2)}(v_2, t) \cdots p_{xtlk}^{(n)}(v_n, t) dv_1 dv_2 \cdots dv_n$


January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

Driver De-emphasis

w/o de-emphasis

3dB de-emphasis



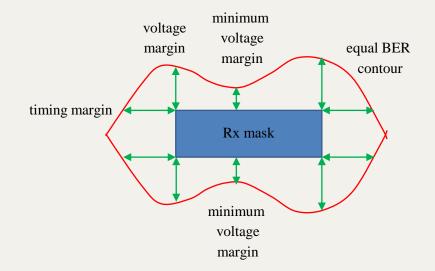
DESIGNCON[®] 2015

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

Rx CTLE


$$H(s) = A \frac{(s - z_1) \dots (s - z_n)}{(s - p_1) \dots (s - p_k)}$$

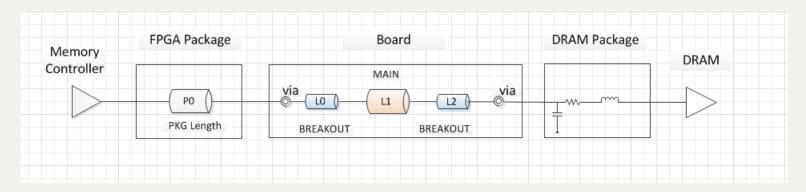
January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA


JESIGN HON

Asymmetric Rise and Fall Edges Capability

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

Timing and Voltage Margins



- Timing and Voltage margins are measured at each mask corner
- Ring-back is captured by minimum voltage margins

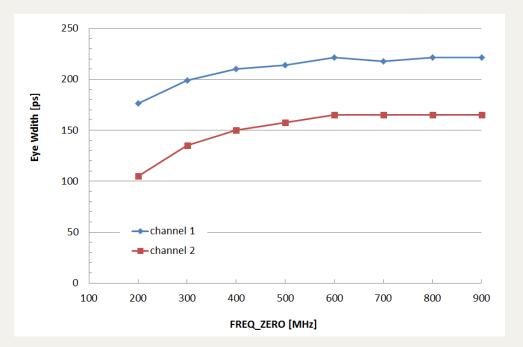
January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

DDR4 Channel Topology

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

CTLE Optimization

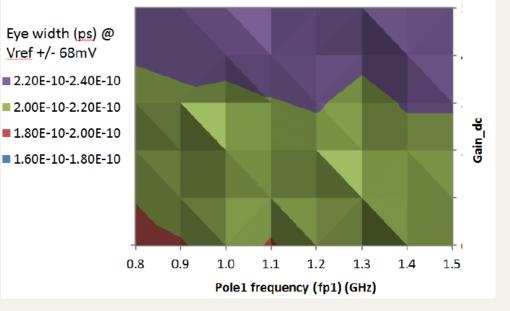
> CTLE design parameters


- fz (zero), fp1 (first pole), fp2 (second pole), Gain_dc (dc gain)

$$H_{CTLE}(s) = c \frac{(s+w_zero)}{(s+w_pole1)(s+w_pole2)}$$
$$c = Gain_dc \frac{w_pole1*w_pole2}{w_zero}$$

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

CTLE Optimization


- CTLE fz sensitivity sweep for two study channels
 - BER 10⁻¹⁶ eye width @ Vref
 +/-68mV saturated after
 600Mhz fz

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

CTLE Optimization

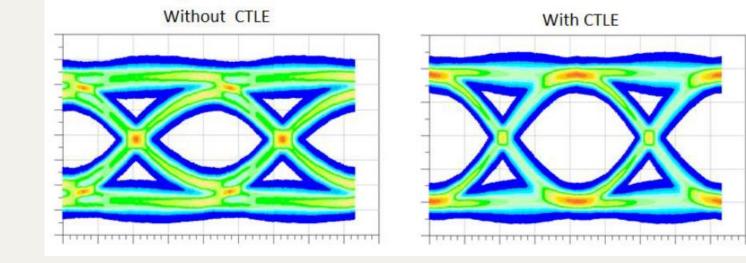
- CTLE fp1 Vs. Gain_dc sensitivity sweep at 4.5GHz bandwidth
 - BER 10⁻¹⁶ eye width not sensitive to fp1 around 1.2GHz
 - BER 10⁻¹⁶ eye width increase with higher Gain_dc

BER 10-16 eye width from fp1 and gain_dc at 4.5GHz bandwidth (fp2)

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

CTLE Optimization

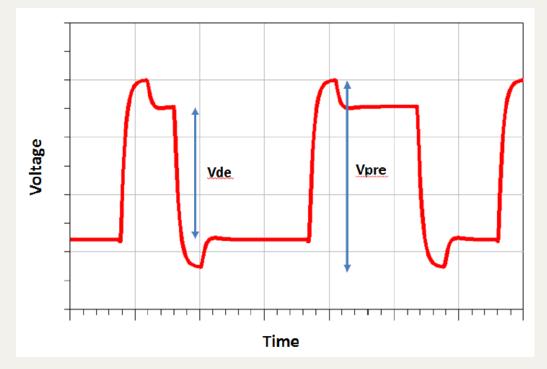
- CTLE fp1 Vs. Gain_dc sensitivity sweep at 6 GHz bandwidth
 - BER 10⁻¹⁶ eye width not very sensitive to fp2 around 5GHz
 - BER 10⁻¹⁶ eye width increase with higher Gain_dc



DESIGNCON[®] 2015

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

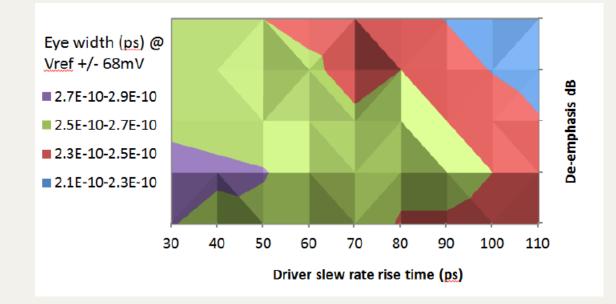
CTLE Optimization -- 2400Mbps DDR4


significant BER 10⁻¹⁶ eye width gain achieved with optimized CTLE

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

De-emphasis Optimization

De-emphasis dB level is defined as 20*log(Vde/Vpre)

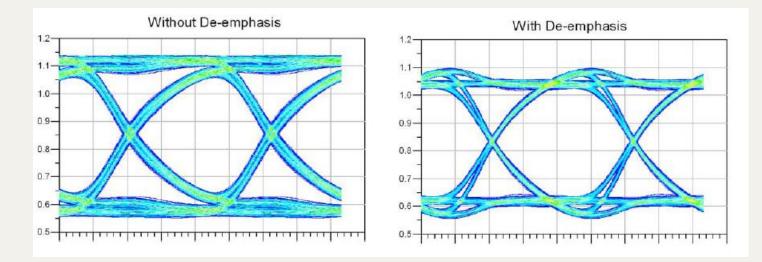


January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

De-emphasis Optimization

JESIGN HON

> Optimal De-emphasis dB can be identified for driver slew rate



January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

VESIGN LOV

De-emphasis Optimization – 2400Mbps DDR4

> 10-20ps BER 10⁻¹⁶ eye width gain achieved with optimized dB setting

January 27-30, 2015 | Santa Clara Convention Center | Santa Clara, CA

Summary

- A statistical simulation engine is introduced for designing DDR4 system to JEDEC 10-16 BER target
- Effects of driver de-emphasis and Rx CTLE on DDR4 timing at BER target of 10-16 are investigated
- > De-emphasis and CTLE are effective techniques to mitigate jitter and achieve DDR4 design target after optimization.