Realize Your Product Promise®

ANSYS°

What is Slwave?

Virtual System Analysis with HFSS & Slwave

Assemble ECAD & MCAD

- Select appropriate solver
 - HFSS, SIwave or PlanarEM
- Connect TX/RX up within
 Schematic circuit analysis
 - LNA
 - IBIS & IBIS-AMI
 - QuickEye & VerifEye
 - HSPICE*
 - PSPICE**

SIwave is a hybrid EM solver that complements HFSS Full-wave extraction due to its speed & capacity.

SIwave enables full Package and PCB Panel Analyses with a high fidelity hybrid solver.

SIwave includes Nexxim PI/SI/EMI circuit capabilities to provide end-to-end solutions/work flows.

*HSPICE solver requires Synopsys license; Nexxim supports HSPICE syntax

** Uses Nexxim solver with PSPICE syntax

Slwave

What is Slwave?

- Hybrid 2.5D full wave EM field solver
- Models layered structures
- Analysis performed
 - Signal Integrity
 - Power Integrity
 - DC IR drop analysis
 - EMI/EMC

Ansoft LLC 10000.00

1000.00

100.00

⊊ 10.00

1.00

0.10

0.01

1E+006

- Decoupling capacitor optimization
- PSPICE, HSPICE, & Spectre ckt analysis

Supported ECAD Translations

⇒

• Cadence

- Allegro — – APD
- SiP Digital/RF
- Virtuoso

Expedition

Boardstation

Boardstation XE

- 16.0, 16.1, 16.2, 16.3, 16.5, & 16.6 ⇒
- 16.0, 16.1, 16.2, 16.3, 16.5, & 16.6 ⇒
- 5.10, 6.14, 6.15, & 6.16 (Linux only) ⇒

Mentor Graphics ٠

– PADS

v2005, v2007.1 thru EE7.9 (uses HKP design flow) ⇒

16.0, 16.1, 16.2, 16.3, 16.5, & 16.6

- 8.x (uses HKP design flow) ⇒
- ⇒ v2007, v2007.1, v2007.2, v2007.3 and v2007.7 (uses HKP design flow)
- PowerPCB v5.2a, v2005 and v2007 (ASCII Flow) ⇒
- Zuken (Sold by Zuken) •
 - CR5000
 - CR8000

- 10 and higher (Zuken translator for .anf & .cmp) ⇒
- 2013 and higher (Zuken translator for .anf & .cmp) ⇒

• ODB++

- **Altium Designer**
- **Mentor Expedition**
- Mentor PADS
- Zuken Cadstar ⇒
- **IPC-2581** ٠
 - Pulsonix

Revision 8.5 build 5905 and greater ⇒

ANSYS neutral file format

Other ECAD Formats •

- .anf _
- .gds
- .xfl
- .dxf

- **IC Chip format Apache Sentinel format** ⇒
- AutoCad drawing format \Rightarrow
- Added Lead Frame Editor capability to Slwave and ANSYS Electronics Desktop •

- **R10 and greater** ⇒ EE7.9.1 and greater ⇒
- 9.4 and greater ⇒
- 12.1 and greater

⇒

⇒

Functionality	Slwave – DC	Slwave – Pl	Slwave
ECAD Translation	\checkmark	~	\checkmark
SIwave & 3D Layout GUI	\checkmark	✓	\checkmark
I ² R DC solver (Joule Heating with Icepak)	\checkmark	✓	\checkmark
DC Path Resistance Solver	✓	✓	\checkmark
Plane Resonance Solver		✓	\checkmark
Automated Decoupling Analysis Optimization		\checkmark	\checkmark
AC SYZ Solver		✓	\checkmark
AC Frequency Sweep Solver		✓	\checkmark
Synopsys HSPICE Integration		✓	\checkmark
Z _o Scanner (Single Ended & Differential)			\checkmark
Cross-talk Scanner			\checkmark
TDR Wizard			\checkmark
Near-Field EMI solver			\checkmark
Far-Field EMI Solver			\checkmark
Flight Time Signal Net Analyzer			\checkmark
Circuit Analysis (IBIS, IBIS-AMI, .tran, .ac,)			\checkmark
Network Data Explorer & Macro-modeling			\checkmark
Conducted & Radiated EMI with Circuits			\checkmark

Slwave – DC

- A product offering specialized for predicting DC power delivery issues within PKGs and PCBs.
 - 1. The solver uses a unique <u>Adaptive Mesh Refinement</u> process to ensure highly accurate predictive analyses for <u>Chip, Packages, and Printed</u> <u>Circuit Boards</u> which include ECAD primitives such as planes, traces, vias, bondwires, solderballs and solderbumps.
 - **2.** Produces the following analytic results
 - DC voltage drop (Voltage) for all nets including GND and V_{dd}
 - DC current direction (Amps/Area²) that includes return paths
 - DC current magnitude (Amps) into and out of vias
 - Power density (W/Area²) and power loss (Watts) per layer
 - **3.** Has bi-directional coupling to Icepak to account for thermal losses (joule heating)
 - 4. Automated reports for user defined pass/fail criteria using .html formats

DC Adaptive Mesh Refinement

Adaptive Pass
 Adaptive Passes
 Adaptive Passes
 Adaptive Passes
 Adaptive Passes

DC Results & Analysis

	Path Resistance Initial Mesh	Time & RAM	Path Resistance Adaptive Passes	Time & RAM
Voltage Source to	17.236 mΩ	11 Seconds	18.278 mΩ	17 Seconds
U1 (path)	1 - Pass	6.7 MB	3 – Adaptive Passes	8.1 MB
Voltage Source to	16.850 mΩ	10 Seconds	17.870 mΩ	16 Seconds
U2 (path)	1 - Pass	6.7 MB	3 – Adaptive Passes	8.1 MB

DC Results & Analysis

DC Path Resistance

Current Vectors Showing Electron Direction

Power & Ground Plane Voltage Drop

Slwave Thermal Solves using Icepak

Slwave Thermal Solutions using Icepak Solver

- Joule Heating & Temperature analysis from Slwave
 - Uses Icepak Solver:
 - Joule Heating
 - Conduction only analysis
 - Forced convection (fan) analysis
 - > Air can flow across (parallel) PCB or normal (perpendicular) to PCB
 - Natural convection analysis
 - Simplified cabinet enclosures included
 - Component power (Watts) allocation during setup
 - Ability to "Open" and perform more detailed analysis in Icepak GUI

Slwave-Pl

What is Slwave-PI?

- Power Integrity Platform utilized to <u>Launch & Solve ECAD</u> <u>Simulations</u>
- 2.5D & 3D Field Solvers
 - SIwave Hybrid AC & DC Solvers for PI
 - 3D Field Solvers for PI*
 - HFSS, Q3D Extractor, & PSI
- Models layered structures (Chip, PKG, & PCB)
- Creates 3D MCAD models for ANSYS Workbench, Q3D Extractor & HFSS

Analyses performed by Slwave-PI Core Solvers

- Power Integrity
 - 3D DC Resistance Solver with Adaptive Mesh Refinement
 - 2.5D Resonance Solver
 - 2.5D Driven Terminal Frequency Sweep Solver
 - 2.5D AC SYZ Solver
 - 2.5D Capacitor Loop Inductance Solver
 - PDN Channel Builder: Creates Apache RedHawk Model
 - PI Advisor: 2.5D AC SYZ Decoupling Capacitor Optimizer

PCIe Card Power Distribution

Analyses performed by SIwave-PI 3D Solvers*

- Power Integrity
 - HFSS 3D Layout: General Purpose 3D Solver for PKG PI
 - PSI: 3D Prism Element Solver for Package PI
 - PI Advisor: Option to use PSI 3D Solver for Decoupling Capacitor Optimization
 - Q3D Extractor: Quasi-static Lumped RLC Extraction for PKG & PCBs
 - CPA: Full-wave RLC parasitic Extraction for PKGs

Slwave HPC Acceleration

Distributed Discrete S-Parameter Sweeps

- Shared and distributed memory operation

Cores	Configuration	Runtime	Speed Up
1	1 node	92hr 39 min	1x
16	1 node	16hr 18min	6x
32	2 nodes	5hr 28min	17x
64	4 nodes,	2hr 50min	33x
128	8 nodes	1hr 31min	61x

PI Advisor: Automated PI Analysis

Optimizes Decoupling Capacitors for Power Integrity

- SIwave AC Solver or PSI AC Solver
- Slwave AC Solve Time = 15 min 7 sec
 - Frequency Setup
 - 1KHz <= f < 1GHz
 - Genetic Algorithm Setup
 - Optimized for Impedance
 - Optimized for Total Number of Caps
 - Optimized for Capacitor Types
 - Optimized for Price

Original solution

- Total # Caps: 74
- Optimized Solution
 - Total # Caps: 18
 - Capacitor Types = 5
 - AVX, Samsung, and Kemet

Slwave

What is Slwave?

- Platform to Launch & Solve ECAD Simulations
- Field Solvers
 - HFSS, Q3D Extractor, CPA, & PSI
- Thermal Solves
 - Icepak
- Circuit Solvers
 - Nexxim & Synopsys HSPICE
- Models layered structures (PKG & PCB)
- Creates 3D MCAD models for ANSYS Workbench, Q3D Extractor & HFSS

Analyses performed by SIwave Core Solvers

- Power Integrity
 - 3D DCR Solver with Adaptive Mesh Refinement
 - 2.5D Resonance Solver
 - 2.5D Driven Terminal Frequency Sweep Solver
 - 2.5D AC SYZ Solver
 - 2.5D Capacitor Loop Inductance Solver
 - PDN Channel Builder: Creates Apache RedHawk Model
 - PI Advisor: 2.5D AC SYZ Decoupling Capacitor Optimizer

PCIe Card Power Distribution

Analyses performed by SIwave Core Solvers

- Signal Integrity
 - Zo & Crosstalk scans for PCB & PKGs
 - 2.5D AC SYZ solver: Fast, High Capacity Hybrid Solver
 - Signal Net Analyzer: Impedance & Flight Time Solves
 - Slwizard: Creates & Solves Transient CKT Schematics
 - TDR wizard
- EMI/EMC
 - 2.5D Near-Field Solver
 - 2.5D Far-Field Solver
 - 2.5D Driven Terminal Frequency Sweep Solver
 - 2.5D Resonance Solver

Leadframe Editor

Lead Frame Editor

- Creates Slwave & 3D Layout .anf Geometries
- Creates HFSS & Q3D .sat Geometries

Lead Frame Editor

• SIwave QFP Package from Lead Frame Editor

Impedance & Flight Time Calculations

Zo Scans (SE & Differential) with Reporting

Create & Solve Circuit Schematics

19 © 2016 ANSYS, Inc. A

April 24, 2016

Slwave SYZ Solver Integration into AEDT 3D Layout

- Slwave Solution Setups are now part of ANSYS Electronics Desktop 3D Layout
- Enables parametric solves
- Enables usage of Electromagnetics RSM

[PCB	Pkg_Merge - board - Layout]		
Too	ls Window Help		
1	Edit Libraries	•	🖻 🕸 🥔 🥔 📴 📕 🖂
	Library Tools	•	board T
	Project Tools	+	XY Plane
	Run Script		
	Pause Script		
	Record Script To File		
	Record Script to Project		
	Open Command Window		
	Password Manager		
	Options	•	
	Keyboard Shortcuts		
	Customize		
	External Tools		
۲	Show Queued Simulations		
1	Edit Active Analysis Configuration		
	Import Array from Table		
	Job Management	•	Select Scheduler
	Calibration Wizard		Submit Job
	Network Data Explorer		Monitor Jobs
	PEmag		

Slwave Parametric Design within AEDT 3D Layout

Project Manager – – – – – – – – – – – – – – – – – – –				
⊡-∰ SIwave_3D_Layout_PKG_PCB*	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
😑 🥔 SIwave_3D_Layout_PKG_PCB*				
		8		
- 🚰 Boundaries		2 m	\sim	
Excitations				
□- 鐐 Analysis				
Cosim Options (HFSS)	3			🔨 🦛 🦉 🧀
E-M SIwave SYZ 1				
Sweep 1	2			
		%		
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Field Overlave			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Far Fields		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
E Definitions	9			
	0.0 7.			Carta a constant
	e_ *****			
	Setup Sweep Analysis			
	Swoon Definitions	leur ler l		
	Table General	a Calculations Options		
	Sync# Variable	e Description	Add	
	\$pkg_MS_Width	Linear Step from 1.75mil to 2.25mil, step=0.25mil		1 · · · · · · · · · · · · · · · · · · ·
	\$Top_PKG_Etch	Single Value at 1.1	E dit	
		Single Value at 1.25	Delete	
Properties 4 ×	\$PCB_MS_Width	Linear Step from 4mil to 6mil, step=1mil		
	\$TOP_PCB_Etch	Single Value at 1.15		
Name Value Unit Evaluated Value		Single Value at 1.25		1 🔪 🔭
Name ParametricSetup1		Single Value at 1.4		•
Enabled				
	1			
			,	
		Sync	2 UnSync	

ANSYS

Improved AC SYZ Accuracy

- Advanced 3D DDM solver improves accuracy for
 - Traces routed across splits, unreferenced traces, poorly referenced ports, vias & large antipads

Slwave Conformal Soldermasks

	News		* Thislanse (wile)	A Material	Construction (C. (m)	A Distantia Dil	Distantia accurate	Lass in sec.	Terretoren	Eleventions (mile)	Developer
Co	Tra Craferral SM	CONFORMAL COAT		CalifacMania	Conductivity (S/m)		Dielectric constant	Loss tangent	Translucency	Elevation (mils)	Rougnness
	Top_contormal_3M	CONFORMAL COAT		SOIDERMASK	U	C III M I	0.1	0.035	0	04.0	
▶	top	DIELECTRIC	61	EDB_copper	5.8E+U/	Solderiviask	3.1	0.035	U	63.4	HJ: U , F
	Dielectric_1	DIELECTRIC	4	EDB_FR4_epoxy	U	EDD ED4	4.4	0.02		59.4	
	plane I	METAL	0.65	EDB_copper	5.8E+07	EDB_FR4_epoxy	4.4	0.02	0	58.75	HJ: 0 ,
	Dielectric_2	DIELECTRIC	52	EUB_FR4_epoxy	0	500 504	4.4	0.02		6./5	
	plane2	METAL	0.65	EDB_copper	5.8E+07	EDB_FR4_epoxy	4.4	0.02	U	6.1	HJ: 0
48	Dielectric_3	DIELECTRIC	4	EDB_FR4_epoxy	0		4.4	0.02	_	2.1	
	bottom	METAL	1.1	EDB_copper	5.8E+07	SolderMask	3.1	0.035	0	1	<u> </u>
Add /	Delete / Move Layer(s)	Edit Selected Layer(s)								
Add /	Delete / Move Layer(s)	Edit Selected Layer(s)		Dielectric Fill SolderMask		lindate				
Add /	Delete / Move Layer(s) Idd Above Selected Layer Add Below Selected Layer	Edit Selected Layer(s Colorffb	9	Update	Dielectric Fill SolderMask	<u> </u>	Update				
Add /	Delete / Move Layer(s) dd Above Selected Layer dd Below Selected Layer	Edit Selected Layer(s Color) 464	Update Update	Dielectric Fill Solder/Mask	s v (Update Update				
Add /	Delete / Move Layer(s) dd Above Selected Layer Add Below Selected Layer Delete Selected Layers	Edit Selected Layer(s Color fb Name top) 464	Update I Update I	Dielectric Fill SolderMask	· · · · · · · · · · · · · · · · · · ·	Update Update				
	Delete / Move Layer(s) dd Above Selected Layer Add Below Selected Layer Delete Selected Layers Move Selected Layers Up	Edit Selected Layer(s Color top Name top Type METAL) 464	Update Update T Update T Update T	Dielectric Fill SolderMask Translucency Thidmess 1.1	s v v v v v v v v v v v v v v v v v v v	Update Update Update				

Single Ended Zo Without Trace-Trace Coupling Without Conformal Soldermask

Single Ended Zo With Trace-Trace Coupling Without Conformal Soldermask

57.6 Ω

Single Ended Zo With Trace-Trace Coupling With Conformal Soldermask

Trace Cross Section and Surface Roughness

Trace Cross Section Shape Editor	X
	Layer: SURFACE
	Shape: Trapezoid 🔹
IW I	Etching Style Over Etch Under Etch
Width	Formula (Trapezoid Only) W1 = Width * 0.85 W1 = Width - 0.85 * Thickness
Set Absolute Values For Etching W1: W2:	Set Ratios Top:
Note: No graphic representation. Affects SIwave solution only.	100 %
OK Cancel	

E	Edit Layer Roughness	1	
	Top Roughness Bottom Roughness		
	O Hammerstad-Jensen		
	RMS Roughness 0	mm	L
	Huray		
	Model Medium Loss 🗸	Create	Edit Delete
	Nodule Radius	0.5	microns
	Hall-Huray Surface Ratio	3	

Combined AC and DC simulation results

Merging DCR point with frequency-swept AC results

Improved accuracy over the entire frequency bandwidth

C	Compute SYZ-parameters												
Sweep Sensitivity Distributed Analysis (HPC)													
		Sin	nulation name:	SYZ	Sweep 1								
	[1	Compute exact	DC point									
	Ē	reç	juency Range S	etup									
			Start Freq	Stop Freq	Num. Points / Step Size	Distribution							
		1	0Hz	0Hz	1	Linear							
		2	1kHz	5MHz	100	By Decade							
		3	5MHz	5GHz	1001	Linear							

Coupling

- Color indicates coupled segments (not magnitude)
- All Broadside coupled traces are included

Slwave & HFSS EMI Virtual Compliance

RADIATED EMISSIONS

This example shows radiated emissions (using a Quasi Peak detector) that are captured by the bi-conical antenna for every angular position of the PCB simulated in SIwave.

PCB MODEL COURTESY OF

Slwave Near-Field EMI

Conducted EMI with CPM

Realize Your Product Promise®

ANSYS[®]

Slwave-CPA

Requires Q3D 3D Solver license

What is Slwave-CPA?

 The CPA (Chip-Package-Analysis) solver is a 3D fullwave, FEM based solver for fast and accurate extraction of RLC parasitics.

- It is optimized to analyze power and signal nets on packages

Slwave-CPA

- Automated .html reporting for partial and loop resistance/inductance
- The CPA solver is capable of producing per bump/ball resolution RLC extracted parasitics
- Visual Bar graph plotting is available for solderball/bump and Pin Groups

Solver	Net	R		C	Solve Time	Speed	RAM	RAM
		(msz)	(пп)	(pr)	(minutes)	Up		Reduction
Q3D	PDN A	12.3	310.6	24.8	4.51	-	748	-
(TPA)								
CPA	PDN A	12.9	312.4	25.8	0.4	11x	210	4x
Q3D	PDN B	9.1	224.8	24.8	4.51	-	748	-
(TPA)								
CPA	PDN B	9.2	230.7	25.9	0.4	11x	210	4 x

Flip-Chip PDN System

Slwave-CPA

Wirebond Package PDN System

Solver	Net	R (mΩ)	L (pH)	C (pF)	Solve Time (Hours)	Speed Up	RAM (GB)	RAM Reduction
Q3D (TPA)	PDN C	1.58	79.2	128.4	48	-	71	-
CPA	PDN C	1.61	79.9	129.3	0.1	480x	13	5x
Q3D (TPA)	PDN D	0.16	12.6	973.4	48	_	71	_
CPA	PDN D	0.16	12.9	979.3	0.1	480x	13	5 x

Coupled Microstrip Lines

Solver	Net	R	L	С	Solve Time	Speed	RAM	RAM
SOLVEL	Nec	(mΩ)	(nH)	(pF)	(Minutes)	Up	(MB)	Reduction
NPE	Trace A	386	3.42	1.17	3.0	-	450	-
CPA	Trace A	386	3.22	1.17	1.0	3 x	300	3x
NPE	Trace B	386	3.44	1.19	3.0	_	450	-
CPA	Trace B	386	3.30	1.17	1.0	3x	300	3x

