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Electromagnetic Compatibility
(EMC )

Basic knowledge used in EMC
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> Agenda

¢ Circuit Analysis
+ Use of Network Theory
+ Capacitor Coupling
* Inductor Coupling
+ Discrimination

+ Practical Model of Component and
Frequency Response

+* Common mode and Differential mode

* Near Field and Far Field ‘
+ Antenna Effect T -
+ Transmission Line Analysis
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a lju%\):’ Use of Network Theory

* Circuit analysis assumes the following

* All electric fields are confined to the interiors
of capacitors.

* All magnetic fields are confined to the
Interiors of inductors.

* Dimensions of the circuits are very small
compared to the wavelength under :\
consideration.
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- Capacitor Coupling

PAN
+ Noise voltage : y, = @G (Co +CII cn
§ L (Co-C5) VN
i
for R, << — / 1 | L
. ]a)(c12 +C,) Cl C2A~ 2
. ~N )
Vy=JwR, C,V R = SR =

+ Assuming the voltage and il il
frequency of the noise source ' =

cannot be changed " o
* Decreasing capacitance Ci2
* Letreceiver circuit operate ata Vi@ Cl/= C2/= SRLVN
lower resistance level R, l
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Capacitor Coupling

@ NOISe Voltage . VN = jw[C12 /(C12 + (/Z)J . VS

— 100 1/D(ﬂ

v TR 1/
N — SR s




A Capacitor Coupling

C12
C12 + CZG + CZS

* Ci2depends on the length of
conductor 2 that extends beyond the

)'VS

* Noise voltage : 7y =(

shield. : 5
- g A
* For good electric field shielding, it is =
therefore necessary — 7 T
* fo minimize the length of the center e = W
conductor extending beyond the Ci2 y
shield. — P E
Cic" [ “ SR 1?
* to provide a good ground on the b
shield. W = Cx6 -
L 3R 1
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Qip\)-f’ Inductor Coupling
v

* Noise voltage * v, = joBAcosO = joM,, -1

+ B is the rms value of the
sinusoidally varying flex
density produced by current |

In circuit 1.
+ A is the area of closed loop v

In circuit 2.
* My, is the mutual inductance v, @ ggg}/ /

between conductor 1 and 2.

Strategies

+ Decreasing loop area 4
+ Twisted line, proper grounding,shielding ...
* Decreasing flux density B or mutual inductance A,

* Physical separation of the circuits, current flowing in the
twisted pair-...
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% Cable Shield Grounding
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* - Discrimination

+ Electric coupling ¢ \

‘) Ly=10C,,V § /Fé v




Agenda

* Circuit Analysis
¢ Practical Model of Component and
Frequency Response
+ Capacitor
* Inductor
+ Common mode and Differential mode
* Near Field and Far Field

* Antenna Effect
* Transmission Line Analysis

2-10



.
Fat

* Measurement setup
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Practical Model of Component

Practical Capacitor

A

Z
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Practical Model of Component

<>
u’h ~
+ |deal Capacitor Impedance Transfer Function
‘@‘i Yol | (aB)
t l+]—
. @y
Vi 0
-20dB/dec
: ) @, W
* Practical Capacitor
° ZC A ‘T(C{))‘
Vi Vo : / 0
capacitive inductive ‘\’
resonanc;* .
' @ o @,
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Practical Model of Component

EQUIVALENT RISE TIME {ns)

o
b=
T
Q
W
Q
z
<
o
w
o
2

L
FREQUENCY (MHz) ; é
Impedance of various value decoupling capacitors in series with 30nH of inductance ,5
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Practical Model of Component
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Practical Model of Component
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Practical Model of Component

-
th“j
* |deal Inductor Impedance Transfer Function
Zr=joL 4
l+]—
. Wy
\VA \V/e 0
-20dB/dec
Z) Wy Z)

+ Practical Inductor

resonance

capacitive

w
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P Agenda
A
* Circuit Analysis

* Practical Model of Component and
Frequency Response
+ Capacitor
* Inductor

¢ Common mode and Differential mode

* Near Field and Far Field

+ Antenna Effect :.\

..
* Transmission Line Analysis o\
:
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|

¢ ﬂ;\(}?bmmon Mode and Differential Mode
¥

* Common-Mode(CM) — Balance Circuit

* Cause of ground impedance in design or
measurement system

* Differential-Mode(DM) — Unbalance Circuit
¢ Cause of internal circuit operation or unbalance

Id

Vs + Voltage between phase and ground ﬁ, — >
Vs - Voltage between neutral and ground P 4
CM : V=(VpetVyo)/2 Vool Tc Id -(% \
DM : V=(Vpe-Vye)/2 I\ o o

AV —l | »

NG ,
G Y
DI E
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%mmon Mode and Differential Mo; X

Ic

Ic

>

=
"




2-20

ﬂz > Balanced Circuitry

Z1§

§22

* If Z1=Z> then |1=I> and Ipm=0.

* No DM current flows into the circuitry.

* If Z1#Z> then I # 12 and lpmw # 0.
* There is DM current flows into the circuitry, which is

transferred from CM.
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ﬁ > Balanced Circuitry

A
I
®
Cir U (et 2
e
S =
+ The balanced receiver responds only to the “‘
T e

difference between the two inputs.
* The better the balance is, the larger the CM rejection is.
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“ Balanced Circuitry

VO=A (V-] —VZ)

- 5 o
Figure 3-35. A differential amplifier—or a single-ended amplifier witk. transformer—can be used '

to reduce the effects of a common-mode noise voltage. :
* Asingle-ended (or unbalanced) amplifier with transformer can k’
be used to simulate the performance of a balanced amplifier. 4

+ Using a transformer *'t’
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Measuring instrument
Separate %}: or peripheral device
power ()

Composite DM disturbance
line voltage

Composite
line voltage
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. CM / DM Radiation

* CM radiation * DM radiation
* A low current and high * A high current and low
voltage source, like a rod voltage source, like a loop
or straight antenna. antenna.
¢ SRR i e

N7

NEM ISSION

/_\ SIGNAL PWB

QUIVALENT CIRCUIT




> Agenda

* Circuit Analysis

* Practical Model of Component and
Frequency Response

+ Capacitor
* Inductor
+ Common mode and Differential mode
¢ Near Field and Far Field
* Antenna Effect :-‘

| »
* Transmission Line Analysis
:

»)
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* Near Fields and Far Fields




_.‘o.'

C,.‘?\; Near Fields and Far Fields
v

* Field characteristics are determined by the source,
the media surrounding the source, and the
distance between the source and the point
observed.

* Near (Induction) field

* For a high current and low voltage source (like a loop
antenna), the near field is predominantly magnetic.

* For a low current and high voltage source (like a rod or
straight antenna), the near field is predominantly electric.

* Far (Radiation) field “‘
+ The wave impedance equals the characteristic impedance v
of the medium (e.q. 377.Q2 for air)

* Magnetic and electric effects don’t need to concern
separately.

E
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Q-ﬁ > Near Fields and Far Fields

N
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* Near Fields and Far Fields

A
3000 L (Dipole antenna)
E-field (Electric Source)




> Agenda

* Circuit Analysis
* Practical Model of Component and
Frequency Response
+ Capacitor
* Inductor
* Common mode and Differential mode
* Near Field and Far Field

¢ Antenna Effect
* Transmission Line Analysis
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- Antenna Effect
P
+ If the length of a cable is longer than A/4 it

can be seen as a good polar antenna.

* As cables approach a quarter-wavelength in
length, some of the current in the cable is out of
phase. When the cable is a half-wavelength long
the out-of-phase currents will cause the external
coupling to be zero due to cancellation of effects.

1

E

»)

2=31




i,
g
L=

SHORT CABLE /

APPROXIMATION — 7
TRANSMISSION LINE
MODEL

Coupling factor
NOISE VOLTAGE COUPLING

Figure 2-39. Electric field coupling between cables using the short cable approximations and the
2-32 transmission line model.




> Agenda

* Circuit Analysis

* Practical Model of Component and
Frequency Response

* Common mode and Differential mode

* Near Field and Far Field

+ Antenna Effect

¢ Transmission Line Analysis

* Transmission Line Model “
* Transfer Impedance T »
* Characteristic Impedance ' 3
+ Reflection 4

2-33 _ ’




= Transmission Line Model
v
1

e |f e, lumped model 1S used (, ps)

1 :
s |f L>g'fr . distributed model is used

L : Electrical line length ; it is the time that a electron spends on
running through a lead (pico-sec)

tr : Rising time of the signal transmitting on the lead

Furthermore,

L t” : VP | —C 1‘
e P \/g . v

V; : Propagation velocity 3

C :3x108m/s, g, : dielectric constant= g/g, 4

»)

2-34




Transmission Line Model

* Delay for entire line << Signal transition time

* Every point on the transmission line can be seen
with the same voltage potential.

Lumped Model DC Model

«—  — —>

e — AW
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Transmission Line Model

+ Delay per section << Signal transition time

+ Every point on the transmission line should be
seen as a point with different voltage potential.

* Ringing, overshoot, reflection, and crosstalk will be
more serious in the condition.

M\/\/\/
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<% > Transmission Line Model
N
W’

* Keeping design within the DC-modeled or [ump-
modeled region as far as possible IS the key point.

* Traces (wires) of critical signals, such as clock
sources, should be as short as possible

* Rising time and falling time of the fastest frequency
signal in a circuitry should be as slow as possible.

* The lead running high frequency should have small
propagation delay (e, is small). :‘
* Circuitry and components should be scale down. -

E
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o) Transmission Line Model
‘ogs sections of popular transmission line geometries

* Transmission line — two conductors ([4], p.140,187)

s Zo=f(e&r,W,H,T topology)

Conductor = //,:\
Dielectri %_
Ground plane Microstrip Dielectric constant=2.8~4.5
P -In( 5.98H j - fast
e 0.8/ +T
Conductor ~ S 41V4V L
Dielectric — l
; B
Conductor
Ground plane Stripline Dielectric constant=4.5
7,= % 4 > slow, but good for noise

Ve 06708+ L)
W
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Transmission Line Model

< Microstrip

— Embedded

BN vicrostrip

B s

— Mlcrostrlp

R

T
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<% > Transmission Line Model

Dielectric material Propagation delay(ps/in.)| Dielectric constant €,
Air 85 1.0
Coaxial cable(75%) 113 1.8
Coaxial cable(66%) 129 2.3
FR-4 PCB,
140 ~ 180 2.8~45
outer conductor
FR-4 PCB,
: 180 4.5
inner conductor “‘
Al PCB, -
. 240 ~270 8~10 | @
inner conductor
4
|
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c &? Transfer Impedance

* The transfer impedance of a cable shield :

v, 1(dV
= = ( j (Q2/m)
I, I\ dl

* The shielding effectiveness of a cable can be
expressed in terms of the shield transfer
Impedance. Lower Z; results from a better shielding.

Rg ]

Vg ‘ . § RL=0 r o
Vi \ Q
- ]

Is
Vs g -
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= Characteristic Impedance
v

* The characteristic impedance of an ideal transmission line : z, :\E

It is a constant. PV NTYYY

C —

* The characteristic impedance of an practical transmission line :
it is a function with frequency.

* Z,can be defined as the ratio of voltage to current while a high-frequency
current is flowing on the transmission line.
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Characteristic Impedance
Example

* All substrate FR-4 ; €=4.5 » Z, accuracy £30%

H 2H

B e >

- |




c ' & Reflection

* Reflection coefficient :

Z =7
FR: r 0

Zr : characteristic impedance of termination
Zo - characteristic impedance of transmission line

z

E

»)

* Reflected signal = input signal x I'r
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Reflection

Example

L-ZO) 0>(1“R=—%)>—1

Z,>(Z, =




Reflection
Example

input =V, Z,<(Z, =2-Z,) 1>(FR=%)>O

e

=

_ 1
transmissi on = E- V.

1

Z
reflection = o V.

1




Reflection
Example

7.0 - 7.0




Reflection
Example




Reflection

+ Low-speed circuit : 2:T,, <t,,t,
+ Reflections are masked by rising/falling edges -- insignificant
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